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ABSTRACT 

Very little is known about H,(f~"X) when n is larger than the connectivity of  
X. In this paper we calculate this when X ffi t2®S ® and n = 1 or 2, and when 
X = JU(q) or JSO(3) and n is arbitrary. Some information is also given when 
X is a sphere. 

One approach to studying the homotopy theory of a space X is to consider 
the n-fold loop space on X where n may be much larger than the connectivity 
of X. Of course, very little is known about the homology of a space which has 
been looped beyond its connectivity. In this paper we shall study this problem 
for certain spaces X. 

Write D.~X for the component of the base-point in t2nX. We shall give an 
explicit calculation o f H ,  f~(t2~°S ®) for n ffi 1 and 2. Write JU(q) for the fibre 
of ~t/q - 1 : BU ~ BU and JSO(3) for the fibre of ~,3 _ 1 : BSO---BSO. We 
compute the mod-p homology of t2~JU(q) and the mod-2 homology of 
f~JSO(3). One consequence is that if f :  X ~ JU(q) is a map which is a split 
epimorphism on the first non-vanishing homotopy group of JU(q) localized at 
the "usual" primes (defined after 1.4), then H , f ~  Xhas a primitively generated 
sub-Hopf algebra which is a polynomial algebra with infinitely many genera- 
tors for all n >_- 2. 

We give some information on H,(f~+kS"; F2) for some values of n and k 
obtained from James' filtration of t2S n. All of this is closely related to the 
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Whitehead square, ton = [in, in], ton : s2n-  1....~ S n, and its generalizations. For 
example, by adjointing to, one gets a map tbn : S 2n- ~-q ~ ~28 S n and one might 
ask if this map is non-zero in rood-2 homology. This "low-dimensional" 
information then has global implications for the structure of H , ( f ~  + +Sn; F2) 
(at least in the examples where we can compute answers). Thus we give some 
estimates on q such that tbn is non-zero on H 2 n - , l (  ; F2). The situation here 
is that this last map is non-zero after relatively few loops except in the possible 
Arf invariant cases: n = 2 k - 1. We include one specific example here by 
calculating H,(fl~S3; F2). The rood-2 homology of  D~ + tSn was computed by 

T o m  Hunter  [HI. 
It seems worthwhile to make the following observations: In the examples 

where we are able to do explicit calculations, the homology of D.~++Y:X 
contains a polynomial algebra with infinitely many generators. Furthermore 
the nilpotent elements have bounded order of nilpotence and this order is a 
function ofq .  For example, H,(fl~ + 'S n; F2) contains an exterior algebra, but if 
x 2 # 0, then x t ~ 0 for all t in our examples. 

We thank Martin Peim for his suggestions concerning JSO(3). 
We would like to take this opportunity to express our fondness for Alex 

Zabrodsky both as a mathematician and as a wonderful human being. 

1. Statement of results 

We restrict attention to the prime 2 for Theorems 1.1 and 1.2. 

THEOREM 1.1. H*(fI~+~S+°; F2) is isomorphic to a polynomial algebra with 
primitive generators. Thus H,(fI~+~S°~;F2) is isomorphic to an exterior 
algebra as an algebra. 

THEOREM 1.2. H*(f~+2S®; F2) is isomorphic to a tensor product of  poly- 
nomial algebras and exterior algebras. All even dimensional generators are 
polynomial and "most" odd dimensional generators are polynomial. 

We remark that explicit generators in Theorems 1.1 and 1.2 are given in 
their proofs. The situation is different for H,(f l~+3S~; F2). 

In the next theorem, p is any prime. 

THEOREM 1.3. There is an isomorphism of  algebras 

H,(~JUfq); F,) ~ {~ (At f2k-l] ~ F, [X2k]) 
pl(cn+k-D 
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where f~,-i is the unique primitive in the image of  H~,_~(D~o~+tBU;Fo) ~ 
H~,_ l(D~"JU(q); F o) and x~ has non-zero image in H~,(D.~"BU; Fp). 

THEOREM 1.4. There is an isomorphism 

(^[X2k+,]®F,[X2k]) 
ol(qn+k-D 

which is one of  algebras i f  p > 2 where x2k is in the image ofH2k(D.~nBU; Fo)---. 
H~(D.~'-tJU(q); Fo) and X2k + ~ has non-zero image in H2k + ~(f~'-tBU; Fo). 

Next fix an odd prime p and choose a prime q such that qi _ l~0(p)  for 
O<i < p -  1 and vo(q°-~-1)ffi  1 (and recall that infinitely many such q 
exist). Assume that X is an H-space and there is an H-map f :  X----JU(q) such 
that f induces a split epimorphism on the p-primary component of 
II2p_3 JU(q) ~ ZIp. 

THEOREM 1.5. Assume that X satisfies the above hypotheses. Then 
H.(D.~X; Fp) contains a primitively generated Hopf algebra which is polyno- 
mial on infinitely many generaWrs if  n > 1. 

Next, we give the mod-2 (co-)homology of f~JSO(3). 

THEOREM 1.6. The mod-2 (co-)homology of D~JSO(3) is given as follows: 
(i) I f  k----- 1 mod 8, H*f~JSO(3) is tsomorphic to H* Spin ® H*SO/U as an 

algebra. 
(ii) I f  k E 2 mod 8, H*D~JSO(3) is isomorphic to H*SO/U ® H*U/Sp as a 

vector space. 
(iii) I f k  ~ 3 rood 8, H*D~ JSO(3) is tsomorphic to H*SU/Sp ® H*BSp as an 

algebra. 
(iv) Irks- -4  rood8, H*D~JSO(3) ts isomorphic to H*BSp®H*Sp as a 

vector space. 
(v) I f  k -~5  rood8, H*D~JSO(3) ts isomorphic to H*Sp®H*Sp/U as a 

vector space. 
(vi) I f  k -~6  rood 8, H*P,~JSO(3) ts isomorphic to H*Sp/U®H*UO as a 

vector space. 
(vii) l f k  ffi 8j - 1, then H.D.~JSO(3) is isomorphic to 

F2[P~+I In-----0 rood 2b]®F2[P2, P2n+112n~ 0 mod 2vj]®F2[en]/e~ "j 

as an algebra where the degree of  pi is i, the degree of  e~ is i and 2~ is the largest 
power of  2 in 3 4j -- 1. 
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(viii) l f k  = 8j, then H*t20kJSO(3) is isomorphic to 

2"I 2 
(F2[c0,]/c0n)~F2[f~2,i_l]~F2[f2n_ 1 [ 2 n ~ m o d  2'1] 

as an algebra with degree(to~) = i and degree(~) = i. 

Turning to other specific examples, we consider H , f ~  +kS~. Here of  course 
one must  first consider the fibrations giving the EHP sequence. Recall the 
second James-Hopf  invariant h2 : ~2S" + ~ ~ f~S 2~ + t together with the j- fold 

composite of h2, 

h~ : DS" +l ~ t2S 21~+1. 

The 2-local fibre of h~ is J2J_~S n, the (2 j - 1)-st filtration of  the James 
construction JS ~. Thus one obtains a fibration 

f~  ÷k(h~) : t2~+k+lS~+l---.t2~+k+lS2'~+l 

where we assume that n + k + 1 < 2 Jn to insure that the base is simply- 
connected. Thus the fibre of  t2n+k(h~) is D~+k(J21_tS ~) and there is a 
fibre sequence 

~'~n+k+2s21n+l fl'+~(&) r~n+k, r , " ,nx  ~ + k + l s n + l  ~'~n+k+ls21n+l J x/~0 l, . /21- p3 ) ~ ~ . 

LEMMA 1.7. The Serre spectral sequence in rood-2 homology for ~"+k(h~) 
collapses i f  and only i f  ~" +k(A ),  is zero o n  H21n + t_ tn  + k + 2)( ,F2). 

Thus the failure of the collapse of  the Serre spectral sequence is measured by 
the mod-2 Hurewicz image of  the generalized Whitehead product. We show 
that this image is frequently non-zero. 

THEOREM 1.8. Let n = 2a(2k + 1) - 1 with k > O. Then the Whitehead 
square ton has non-trivial Hurewicz image in H,_q_t(D.~+qS";F2) for 
n - l > q > 2  a. 

Thus, for example, if n = 4j + 1, then con has non-trivial Hurewicz image in 

H~_3(t2~+2S'; F2) and by [HI zero image in H,_2(t-~ + tS~; F2). Also, i f n  - 2j, 

then ton has non-trivial image in H,_2(f~ + 1S~; F2). Of  course by desuspending 
the Whitehead square one obtains other classes in H,(f~"+q-'S"-e;F2), 
but  we shall not pursue this connection to the vector field problem here. As a 
sample specific calculation we illustrate how the Whitehead square forces 
relations in the homology of  t ~ S  3 and, in general, in H,(~nS2n-t;F2) 
as in [H]. 
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EXAMPLE 1.9. There is an isomorphism of algebras 

H,(n~S3; F0 ~ ^[Q~Q~[ l l la + b > I ] ® F~[Q~Q~Q~ Q~x, I d + b >= 1] 

®F2t(Q[Q~x,) 2, x21 c + d > 0]. 

Thus the image of H.(D~ $3; Fe) in H.(D~ SS; Fe) is the exterior algebra given 

by ^[QfQb2[1]la + b >-_ 1]. 
We remark that the Serre spectral sequence for 

never collapses for j >_- 2 and k > 1 by the following proposition. 

PROPOSITION 1.10. I f  k > 1, j >  2, and n + k + 2 < 2 J n  + 1 then the 
composite 0, 

+t(A), 

I'12,n+l_(n+k+2)~n+k+2s 2'n+l , I'I2,n_n_k['~+k(J2,_lS n) 

is non-zero. 

l 
H2,n-n -k(fl~ +k J2,-~S'; F2), 

The reason for mentioning Proposition 1.10 is that one can iteratively fibre 
+k + I s n  + I intO spaces which one can eventually identify. These calculations 

suggest that there should be a "reasonable" spectral sequence abutting to 
H,(~+kSn; F2) with a computable El-term. 

2. The homology of D~ + ®S ®, i -- 1, 2 

The methods here are to consider the Eilenberg-Moore spectral sequence 
abutting to H * ~ X  with E2 -~ Tormx(Fz, F2) (and where X is assumed to be 
simply-connected). Recall that if H*X is a polynomial algebra and X is of 
finite type, then the spectral sequence collapses. The work here is to deter- 
mine the precise algebra extension by using the action of the Steem'od 
operations. 

Let Xbe an oo-loop space and x EH~X. Define three functions ~, A, and 2' as 
follows: 

(a) If q m 1 mod 2, then ~(x) -- 0 while ff q -- 2k, then ~(x) = Sqk,(x). 
(b) If q------0 mod 2, then ~(x) -- 0 and i fq  ffi 2k + 1, then Ax = Sqt.(x). 
(c) If q ----- 1 rood 2, then A'(x) ffi 0 and ff q -- 2k, then A'.x ffi Sqt. -~(x). 
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The following lemma is immediate from the Nishida relations: 

(a) ~Q~x =~n(..x[O i f i=0mod2,  
[O i f i  ~ 1 mod 2. 

[ Q~i- t)/2x + ~ + 1)/2~x i f i  = 1 mod 4, 

(b) 2 Q i x = l ~ O i _ W 2 x  i f i ~ 3 m o d 4 ,  

i f  i =-- 0 rood 2. 

= ~ ( i /2 -  1, 2)Qi/2+l~x + (i/2, 1)Qi/2Ax + Q i / 2 _ l A ' X  i f i=- -Omod2 ,  
(c) 2'Qix  [o i f i  ~ 1 mod 2. 

Wellington gave a basis for the module of primitives P H . t 2 ~ S  °° as follows 
[W]: let I = (it . . . .  , ik), k >_ 1, be an admissible sequence and so ij < i j+ t . / i s  
said to be even if all of the ij are 0 mod 2. I is said to be odd if at least one ij is 
1 mod 2. Next, define elementsft ~ P H ,  D ~ S  ~ as follows: 

(i) If  ik ~ 1 mod 2, then f / =  Qzf~ where I = (J ,  ik) and J~ is the Newton 
polynomial in the dements  Xk = Qk[ 1 ] * [ -- 2]. 

(ii) Le t / equa l  (J ,  ij, ij+~ . . . . .  ik) with ( i j+~ , . . . ,  ik) even and ij = 1 mod 2. 

Then ft - -  Q l  Q2ij + ,-i~ Q2ij+ ~- i~ " " Q2i~-  i~fi 1 • 

THEOREM 2.2 [Wellington]. The f t  above are a basis for  P H , ~ S  ~. 

LEMMA 2.3. The map 2 : P H , ~ S  ® -"  P H ,  f ~ S  ~ is an epimorphism. 

PROOF. S ince  2 is given in terms of Sqk,, it preserves primitives and the 
Nishida relations give Sqk, - t f2 k_ t = fk. Notice that Lemma 2.1 gives 

2Q, x = { 0  Q<;" w2Lx i f i  ~ 1 mod 2 , i f  i ~ 0 mod 2. 

Consider ft in case (i) for the definition of ft. Here 

'~" (Q2i, + t Q2i~+ t " " Q2,,_,+ t f2,~- t) = f t .  

In case (ii) above for the definition offt  we have 

f t  = QJQ2i,÷,-ij Q2i,+~-i, " " Q2i~-i,A 

with ij - 1 mod 2. Write 

X = Q2i,+t""" Q2i/_,+iQ4i,+,-2i,+l"" Q4i,-2i,+tf2i,-l. 

LEMMA 2.1. 
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Notice that  4(x) = f~ and that x is primitive although it may not be one of  
Wellington's basis elements. The lemma follows, but we remark that 2, of  
course, has a kernel. 

Wellington proves that  H * f ~ S  ® is a polynomial algebra with generators 
given by (PH.D,o®S®) *. As f~0®S ® splits as RP  ® X F~0~°S® ( 1 ), the cohomology of  
f ~ S ® (  1 ) is also polynomial. By the collapse of  the Eilenberg-Moore spectral 

sequence abutting to H*~20 ® + ~S ®, we get 

E® m A[Y.-~(PH.f~S®(1))*]. 

Thus to show that H*D~ + ~S ® is polynomial algebra it suffices to show that the 
squaring map on the ( - 1)=line of  the Eilenberg-Moore spectral sequence is a 
monomorphism.  As the squaring map  is dual to 4, this follows from Lemma 
2.3. The above gives that there is a choice of  polynomial generators in the 
image of  the cohomology suspension and thus H*D~ + ~S ® is a primitively 
generated polynomial algebra and Theorem 1.1 follows. 

L~MMA 2.4. There is a 2-local equivalence D.0~+IS ® --~RP ~ × D~+~S®(1) 
and H*F~ + IS® ( 1 ) is a polynomial algebra. 

PROOF. There is a multiplicative map D.~ + ~S ® --* RP  ® giving an isomor- 
phism on H~. It suffices to exhibit a map  RP  ® --- P,0 ® + 1S® inducing an isomor- 
phism on I'll. Consider t / : S  I - ~ ) S  ~ representing r /and  oJ : R P ~ L 2 ~ ) S  ® 
inducing an isomorphism on Ill. The standard difference construction using 
the composition pairing and additive loop structure gives a map f :  S m ̂ RP  ~ --* 
D~)S ® inducing an isomorphism on 1-I2. Adjointing f gives the desired map 
and the lemma follows from Theorem 1.1. 

We now mimic the proof  of  1.1 to prove 1.2. The Eilenberg-Moore spectral 
sequence abutting to H*O.o®+2S ® with E2 ffi Torma~+~s-c~>(F2, F2) collapses by 
Lemma 2.4. We claim that the squaring map is a monomorph i sm on all 
elements of  even degree. Notice that the squaring map is dual to 4 '  here. Let 
Qtfk be an element of  Weilington's basis. Assuming that Qtfk is of  even degree, 

w e  h a v e  I = ( i ~ , . . . ,  ik- 1), il ~ i2 ~ ' ' '  ~ ij _ 1 ~ 0 mod  2, and ij --~ 1 rood 2 for 
some j with 2 -<j _-< k. Thus Q~j Q,j+,. • • Q~_, fk = 4(y)  for some y by Lemma 

3.2. Thus 

M(Q2il+2.' '  Q2(ij_~)+2Q2i~_ly) -- Qi~ ' ' '  Q~_14y - Q~J~. 

Assuming that Q~fk is of  odd degree, then i~ is odd and il ~ i 2  ~ . . .  --~ 
ij_ z ~ 1 rood 2 with ij ~ 0 mod  2 for j _-< k - 1. Then 
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' 2 '  A (Q2i~+2" • • Q2~_~+2y) -- Qi," • • Qi~_, y. 

But Q~j... Qik_,A = A'y for some y with ij ~ 0  mod 2. 

Now assume that i~ -~ i2 =--. • • ~-  ik ---- 1 mod  2. Then 

A' A'(Q2J,+2... Q2~_,fk) = Q~, ' ' '  Q~,_~ fk = 0 

and so the dual of Qffk in this case corresponds to exterior generators in 
H * ~  + 2S~. 

We remark that this calculation is consistent with the fact that l-It D~ + 2S® --~ 
Z / 8  and thus the cup square of  elements in H~(D.0 °° +2S~°; F2) is zero. 

To carry out further calculations one must  compute possible differentials in 
the Eilenberg-Moore spectral sequence. The differentials arise on divided 

power elements in 

TOrF2txl/x~-o(F2, F2). 

As a sample, one might consider the universal model  for such differentials by 
considering the loop-space of  E ,  the fibre of  

K ( Z / 2 ,  n )  , K ( Z / 2 ,  n2k) .  

For example, i f k  -- 1, one can compute some differentials by a factorization of  
Sq  ~, n # 2 J, as the study of  the Whitehead product in [BP]. For the t ime being 
we just include the remark that there are non-zero differentials in the Eilen- 
berg-Moore spectral sequence computing H * f ~  +as®. 

3. The homology of t2~(JU(q)) 

Consider q/~ - 1 :BU-- -BU with homotopy theoretic fibre JU(q). Write 
fq ,n - - - f~n(~-  1). As V ~ induces multiplication by qk on H2kBU, fq,2~: 
t22~BU--fF~BU induces multiplication by q ~ + k _  1 on 7t2kD~'BU. Write 
H ,  BU = H. (BU;  Z) and recall that the module of  primitives P H . B U  is 
isomorphic to Z in degrees 2k with a generator given by the Newton polyno- 

mials in X2k where X2k is a choice of  generator for the image of  H2kBU(1)-" 

H2kBU. Thus 

(i) P2 -- x2 and 
(ii) P~k = ( -  1)k+lkx~ + Z f . ? / ( -  1 ) i+ lX~ 'p2k_~ .  

Since the Hurewicz map ~ : 1-I2KBU--~ H2kBU is a monomorphism with ~(1) ffi 
k!(p2k), we have 

(iii) (fc.2~),(P~k) ---- (qn÷k _ 1)(p2k), 
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(iv) (fq~),(x2)---- (qn+l _ 1Xx2), and 
(v) 

-~ ( ( -  1)k + l / k ) [ ( q  n+k - 1XP2k)-  (fq,2n),(~k.~il(- 1)J+Ix~" P2t-~)]. 

Next, write H ,  SU ffi A[X2k+ 1] where xi is of  degree and k -> 1. Since fq~ + 
induces multiplication by q,+k _ 1 on II2k_~f~" +ZBU, we have 

(vi) fq.~+i,(Xz~-l) ---- (qn+k _ 1)X2k-l. 

Since £z~ -- a,(x=_ t) where a ,  is the homology suspension, 
(vii) fc,2n,(X2k) ---- (qn+k  _ 1)X2k. 

Thus the next lemma follows. 

LEMMA 3.1. After reducing mod p, these formulas hold: 

0 i fp [ (q,+k _ 1) 
[ Unit.ck ifpYf(q n + k -  1) 

and 

(fq,2n)*(X~) ---- {0unit. X2k 

Next, consider the map  of  fibrations 

i f p l ( q ' + k - - 1 )  

pY{(q n + k -  1). 

U , JU(q) , BU ~ - l  BU 

1 ] l 1' 
U , * , BU , BU 1 

Passing to connected covers and looping, we get 

D~ n ÷ IBU , D~'JU(q) , flo2~BU 

f102~ + IBU , . , flo2.BU 

As ck E/-/~(D.oZ'BU; Z)  is the transgression of  e~_ ~ E / ~ - ~ ( S U ;  Z), naturality 

of  the Serre spectral sequence and Lemma 3.1 gives that e2t-i transgresses to 
f~q~(Ck) in the Serre spectral sequence for computing H*D~JU(q) .  Reducing 
mod p one has (a) e2k_ ~ is an infinite cycle f f  and ouly i f  p divides q n + t - 1 and 

Co) e2t-i transgresses to a unit  multiple of  ct ff and only ifp does not divide 
qn +k _ 1. Thus we have 



114 F. R. COHEN AND F. P. PETERSON Isr. J. Math. 

E~*~--( (~ A[e2k-,]®Fp[Ck]l®( ~. A[e2k_,]®Fp[Ck]) 
\ p,r0fFk- 1) / \pi(qn+g-l) 

as a differential algebra with 

d2k- l(e2k - 1) ----- unit.  Ck 

provided p g'(q" + k _ I). Since A [e2k - I] ® Fp [C k ] is acyclic in these cases, one 
has 

E**-~( ~ A[e2k_,]®Fp[Ck]). 
\ pl(qn+k- I) 

As the homology of  SU is exterior and the homology of BU is polynomial, we 

have proved the following theorem. 

THEOREM 3.2. There is an isomorphism of algebras 

A[Ak-d®F [X2k] 
pl(qn+k-l) 

where f~k_ ~ is the unique primitive in the image of H2k_ ~(~2 2~ + ~BU; Fp) and X2k 
has non-zero image in H2k(f~20"BU; Fo). 

Rephrasing the dimensions above, one has an algebra isomorphism 

F,) A[u j_, @ 
j~l 

where l u l l = i ,  Iv~[=i, q f 2 p - 2 ,  and 0 _ - < d < p - I  with n ~  
d mod (p  - 1). Thus the first two non-vanishing groups for /~ , (~nJU(q) ;  Fp) 
arc in degrees q - 1 - 2d and q - 2d. 

To compute the 

sequences 

SU ' * 

f/(~-- 1) [ [ 

SU , JU(q) 

homology of  f/2n+~(JU(q)) consider the map of  fibre 

1 
BSU , BSU 

1 I-' 
, B U  , B U  

¢-1 

to get maps of  fibrations 
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a n d  

f ~ - I ( S U )  , , , f~"-IBU 

rig.- , (su) ,, p~.-IJU(q) , ~ " - ' B U  

B U  , * ' S U  

l 1' 
BU , ~ " - l J U ( q )  , s u  

Recall that H.(SU; Z) is an exterior algebra with generators x2t,+l, k-> 1, 
which transgress to x2k in H2k(BU; Z) in the Serre spectral sequence for the 
path fibration. Thus when considering the Scrre spectral sequence for 

(*) BU ~ D~ n- IJU(q) ~ SU 

one has that xv,+l transgresses to (fq.2.).(x~). By reduction rood p together 
with Lemma 3.1, we have 

(i) x2k+l is an infinite cycle if and ifp ] qn+k _ 1, and 
(ii) x2k+l transgresses to uuit.x2k modulo decomposables if p , ~ q , , + k  _ 1. 

Thus the Serre spectral sequence in rood p homology has the form 

E~**~--( @ ^[x~+d®F~lx2dl®( ~ Atx2k+l]~Sotx2k] ) \pg(qn+k-l) ] \pl(qn+g-l) 

with 

T h u s  o n e  has  

0 
d ( x 2 t ,  + l )  "~ unit.x2t 

ifp } (q "+k - 1), 

ifpX(q " + k -  1). 

E~**~ ~ )  ^[x~,+ll®G[x~,]. 
plfea+k-l) 

I fp  is an odd prime, there is no problem in determining the algebra extension. 
If p ffi 2, it is conceivable that a representative of x2k + 1 does not have height 2 
in the Pontrjagin ring. However, by the above we have that the Eilenberg- 
Moore spectral sequence with 

E2** -- TorS'aOu~q~(F2, F2) 
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abutting to H.(D~"-tJU(q); F2) collapses. Thus (X2k+t) 2 is a multiple of the 
unique primitive in degree 4k + 2. 

Theorems 1.3 and 1.4 follow. 

4. The med 2 cohomology of ~JSO(3)  

In this section we prove Theorem 1.6. Throughout this section all coef- 
ficients are in F2 unless otherwise stated. Write X(k)  for the k- connected cover 
of X. Recall that JSO(3) is the fibre of ¥3 _ 1 : BSO ~ BSO. The next lemma 
follows directly from the action of ¥3 on Fl. BSO together with real Bott 
periodicity: ¥~ acts by multiplication by 1 on ~ for q E 1 or 2 mod 8 and is 
multiplication by 3 2, on ILkBSO. 

L~.MMA 4.1. I f k  > 0 there are fibrations 
(1) SO(k) --* JSO(3)(k) --*BSO(k) ifk~k3 mod 4, 

and 
(2) SO(k) ~JSO(3)(k) ~BSO(k  + 1) i f k E 3  mod 4. 

Next notice that ff k - -  0, 1 mod 8, then the map i : JSO(3) ~ BSO gives an 
epimorphism on Flk + t. Since a multiplicative fibration t)l'l: t iE ~ D,B giving 
an epimorphism on IIt has trivial local coefficients, one has the next lemma. 

L E M ~  4.2. There are fibrations with trivial local coefficients given by 
(1) D~SO~D~JSO(3)~t~BSO i f k~k 3 rood 4, 

and 
(2) D~SO-*D~JSO(3)~f~tBO(k + 1) i f k E 3  mod 4. 

The calculation of the additive substructure of H*(t2kjSO(3)) ff 
k~O, 7 mod 8 is a formal consequence of Bott periodicity together with some 
remarks about Hopf algebras. To do this we recall the spaces occurring in real 
Bott periodicity together with their cohomology. References are [B] and [(2]. 

(0) B o  -~ B s o  x RP ®, 
(1) n03so )  ~- s o  ~- Spin x RP ®, 
(2) D(Spin) --~ SO/U, 
(3) t2(SO/U),-, U/Sp,-,SU/Sp × S t, 
(4) n(SU/Sp) --~ BSp, 
(5) f~(BSp) "-- Sp, 
(6) n(Sp) = Sp/U, 
(7) f~(Sp/ U) ----- U/O ~-- SU/SO X S t, 
(8) ¢ g s u / s o )  = BO. 
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The relevant cohomology groups are given in [C]: 
(i) H*BO~F2[ro, l i > 1], 
(ii) H, SO --A[ej[i> l] [17-08], 
(iii) H*SO/U ~--F2[c4k+21 k > 0] [17-21], 
(iv) the integral cohomology of U/Sp is torsion free with H*(U/Sp; Z )  -~ 

A[a~+l [ k > 0] with a4k+l primitive [17-07], 
(v) the integral cohomology of BSp is torsion free and H*(BSp; Z) 

Z[p  I k >_- 11 [17-05], 
(vi) the integral cohomology of Sp is torsion free and H*(Sp; Z) -~ 

[̂Ak+31k >0], 
(vii) the integral cohomology of Sp/U is torsion free and primitively gener- 

ated with 

H*(Sp/U; F2) ~ A[x~, x~, . . . , X~k, . . .], 

H,(Sp/U; Z)  ~ Z[U4k+2lk > 01 [17-09], 

(viii) H*SU/SO ~ A[zk [k >-_ 2] [17-24], 
H ,  UIO -~F2[pl, P3 . . . .  , P2k+~,...] [17-22]. 

REMARK. Throughout the above statements, the subscript of a symbol 
gives its degree. 

Next we record some lemmas implied by the cohomology above. 

LEMMA 4.3. Let Of :  SO ~ SO be a 2-local equivalence. Then ( O f ) ,  -- 1. 

PROOf. Since H ,  SO -~ A[G ] and (Of) ,  is a multiplicative isomorphism, 
(Of),(e~) -- e~ + At where A; is decomposable. Notice that (Of),(e,) -- el and 
we may inductively assume that (f2f),(e~) = e~ for i < N. A calculation with 
the coproduct then gives that AN is primitive. Since AN is decomposable, this 
means that AN ffi 0 as PH,  SO has basis 

P2k+l----e~+l + Y~ eiej. 
O<i<j 

LEMMa 4.4. Let f :  X - .  X be a map o f  l-connected spaces with f *  = 1 and 

H*X is a polynomial algebra. Then (Of)*  = 1. 

PROOf. The Eilenberg-Moore spectral sequence with E2 -- Tor~x(F2, F2) 
abutting to H*OX collapses. A choice of multiplicative generators for H*D,X is 
in the image of the cohomology suspension. The lemma follows by naturality. 
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LEMMA 4.5. Let i i f  : D X ~ X  be a 2-local equivalence where f~X is 
Sp, SplU or SU/Sp. Then (taf),  = 1. 

PROOF. (~f)*(a4k+ 1) = a4k+X as a4k+ t is primitive. (~f)*(f4k+3) = f4k+3 as 
f4k+a is primitive. A similar calculation applies to H*Sp/U. The lemma 
follows. 

LEMMA 4.6. Let (~ f )  : BSp-*BSp be a 2-1ocal equivalence. Then (f~ f )*  = 
1 (in mod  2 cohomology). 

PROOF. Consider fl2f: Sp ~ Sp. By Lemma 4.5 ( f F f ) ,  = 1. As H ,  BSp is 
isomorphic to a polynomial algebra as an algebra, the lemma follows. 

We use the above to compute H*fl~JSO(3) for n ~ 0 ,  7 mod 8. 

LEMMA 4.7. Let f~f : ~ X - "  K~X be a 2-local equivalence with ([If)* = I. 
Then ( f ~ f -  1)* -- 0. 

PROOF. Since (f~f)* = l, this follows immediately from the definition of 
the conjugation in a Hopf  algebra. 

THEOREM 4.8. (i) l f k ~ 3  mod 4 andk~O, 7 mod  8, thecohomologySerre 
spectal sequence for 

D~ SO --* fl0k JSO(3)--" f~kBSO 

collapses. 
(ii) I l k  --= 3 mod  8, the cohomology Serre spectral sequence for 

D~SO ~ f~0kJSO(3) ~ 12kBO(k + 1 ) 

collapses. 

PROOF. Consider the case k =  1 mod  8 and the path-space fibration 
f l S p i n - ~ , ~ S p i n .  Since H*Spin~--F2[f2i_tli > 2], one has that there is a 

choice of polynomial generators for H*flSpin = F2[C4k+2] which are in the 
image of  the cohomology suspension (by collapse of the Eilenberg-Moore 
spectral sequence). Next recall that ilk-t(V3 _ 1) : BSO--" BSO factors through 

BSpin to give a map of  fibrations 

f~(Spin)--~ D.~JSO(3) , SO 

~(Spin) , • , Spin 
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Thus the Serre spectral sequence for the upper fibration collapses by Lemmas 
4.3 and 4.7 as f/k(¥3 _ 1)* is trivial. Finally, the algebra extension is trivial as 
H*~Spin is polynomial. 

Next consider the case k ~ 2 mod 8 and the path space fibration f~(SO/U) 
• --* SO/U. The argument is similar to the above: (1) there is a choice of algebra 
generators for H*f/(SO/U) in the image of the cohomology suspension, 
(2) f/k(V3 _ 1) : SO~U--* SO/Uis trivial in cohomology by Lemmas 4.4 and 4.7 
as f /(Spin)~ SO~U, and (3) there is a map of fibrations 

I'~(SO/U) --~ f),~ SO , D,~JSO(3) , f~okBO = SO/U 

'1 l 1 
D~+tBO , , , Lao~BO 

The next case is k-----3 mod 8 where we consider the fibration D~SO 
f~JSO(3) ~ f~BO(k + 1 ). By Bott periodicity, f~BO(k + 1) --- SU/Sp and 

SO "-" BSp. Thus there is a map of fibration sequences 

D~SO , • , D~BO(k + 1) 1 , D.~BO(k + 1) 

,  JSO(3) ,  BO(k + 1)  BO(k + 1) 

As H,(BSp; F2) is a polynomial algebra, the Milnor spectral sequence with 
E 2 = TorX'~SP~0(F2, F2) abutting to H,(SU/Sp; F2) collapses. Thus there is a 
choice of primitives for H,(SU/Sp; F2) in the image of the homology suspen- 
sion. As ~k+ l (~  _ l) is trivial in cohomology by Lemmas 4.6 and 4.7, the 
algebra generators in homology of D~BO(k + l)  are infinite cycles. Since all 
fibrations here are multiplicative, the result follows. 

Assume that k = 4 mod 8 and consider the Serre spectral sequence for the 
fibration Sp ~ ,  ~ BSp. An inspection shows that the algebra generators in 
H*Sp transgress. (Note that Extu.sp(F2, F2) collapses and abuts to H*BSp.) As 
~k(¥3_ l) is trivial in (mod 2) cohomology by Lemma 4.6 and 4.7, the 
collapse follows by comparing the following map of fibrations: 

Sp ~ D~JSO(3) , BSp 

S p  , * , B S p  
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Assume that k-------5 mod 8 and consider the fibration S p / U ~ I ~ J S O ( 3 ) ~  
Sp. Next consider the path space fibration with CotorS*(s~(F2, F2) abutting to 
H.(Sp/U; F2). Notice that the spectral sequence collapses and so the exterior 
generators for H ,  Sp all transgress. Comparing the fibrations 

Sp/U ' * ' Sp 

1 1 I 
Sp/U----, D~JSO(3) , Sp 

we see that the elements in the homology of Sp are infinite cycles in the Serre 
spectral sequence for the bottom fibration by Lemmas 4.5 and 4.7 together 
with Cotor~.Sp(F,, F~) m H,(Sp/U). 

Assume that k---- 6 mod 8 and consider the map of fibrations 

D,(Sp/U) , f~JSO(3) , fZ(Sp) 

U/O ~ fl(Sp/U) , • , fl(Sp) --~ Sp/U 

Since H*(Sp/U;F2) is polynomial and H*U/O is isomorphic to 
Tor,.sp~v(F2, F2), the algebra generators for H*U/O are in the image of the 
cohomology suspension. Since f~(~3 _ 1) is zero in (mod-2) cohomology, the 
Serre spectral sequence in cohomology collapses for the top fibration. 

Finally, we consider the cases k-----0, 7roodS. Let r / - 1  :BO(1)~BO 
denote the reduced Hopf bundle. Thus ¥3(q_  1 ) - -q3_  1 - - q -  1 as the 
square of a line bundle is trivial. Thus there is a homotopy commutative 

Rp® 
diagram 

BO , BO 

and so ¥3, _=_ 1 as H ,  BO is the symmetric algebra on ( t / -  I ) , / / , R P  ®. [Recall 
that ¥3(a + p) ffi ~3a + ~3p.] Thus as in [FP] the Serre spectral sequence for 
SO--* JSO(3) ~ BSO collapses. 

Write B: BO--- D~BO for the Bott equivalence and let f :  X--- BO specify a 
stable bundle over the finite complex X and let ~k:S sk--- BO denote a 
generator of FIuBO ~ Z. The isomorphism 
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B,: [X, BO] " ,  [S sk A x ,  BO] 

is specified by s end ing f to  Pk ® f .  Compute  the composite 0 ( f )  given by 

X : , BO n ) L~,~kB O t '~w'ql)~oSkBO n - '  B O  

as follows (where 0 ffi B-1 o [ ' ~ 8 k ( ~ / 3  - -  1) * B): 

(i) B(f)  = a®f ,  
(ii) ~Sk(¥3 _ 1XB(f)) ffi (~3 _ 1 ) ( a ® f )  ---- ( ¥ ' a ®  ¥3f)  - (or ® f ) ,  and 

(iii) 0 ( f )  -- B - l [ ¥ 3 a ®  ¥ ' f - -  (or®f)] 
---- B - i [ 3 4 k ( a ®  ~v3f) --  (a ®f)l 
--~ 34k(l / / l f )  - -  f .  

Since ~ 3  = l ,  0 * - - ( 3  4 k -  1)*. Finally compute 0* on the total Stiefel- 
Whitney class W -- Z~>0 wi: In cohomology 0has  the same effect as (3 4k - 1)* 
because (¥3),  = 1, and so 

0 * ( W )  ffi ( W ) 3  ~ - '  . 

Thus i fk  ffi 0, 0* is trivial. But i fk  > 0, 0* is non-trivial. Write vk for the 2-adic 
valuation of  34k _ 1, the largest power of  2 dividing 34k _ 1. 

LEMMA 4.9. 0*(W)ffiZi~.o(W~+2~) 2'~ where 2~ is in the subalgebra o f  

H*(BO; F2) generated by wl, . . . , wi_ 1. 

PROOF. 3 4k-l -- 2'~ .odd  number  = 2', .q. Thus 

O * ( W ) f  W2".'q=(W2"~),ffi(  ~ w2".) ' • . 

i>_o 

Since q is odd. it follows that 

0*(W) ffi (~w? 'yL)(~w? ") ffi (Zw~ ~ ' ) ' ( x w ,  ~') 

where q -- 2L + 1 and the lemma follows. 

The lemma implies the following corollary. 

COROLLARY 4.10. 

ffi lO i f  n ~ O  mod 2 ,k 
O*(w.) ( w 2"~ + 2 2`  i fn  =j2 '~  

where 2i is in the subalgebra generated by w 2"~, . . . , wj_~.2"~ 

Next consider the Serre spectral sequence for 
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SO -~ f2~kJSO(3) --,. BO. 

Since ~/3 _ 1 factors through BSO, we get 

s o  , ao kJso(3) , BO 

SO ' * , BSO 

Hence the Serre spectral sequence for the upper fibration is as follows: 

E2 ~-- F2[wn] ~ F2[ f2n_ l], n > I. 

As a differential coalgebra 

E2 ~ (F2[w~"] ®F2[wi]/(w~" = 0)) ~ (F2[ fj2,k- l] ®F2[f2n- l [ 2n~#0 rood 2Vk]). 

By the above d~2,k (fj2.,_ i) is the class of w: ~ as w~ 'k, i <j, has been kined earlier. 
Since Sq j2,~- i( W~j.~ + Ajv0 = 0, it follows that (fj2.,_ l)2 is an infinite cycle. Since 

the differential coalgebra A[x] ®F2[dx] is acyclic, we have 

E® ~--(F2[w,,]/w~ "~ = 0)®F2[fj~.,-i] ®F2[f2~-l 12n~0 rood T k] 

as an algebra. Since H*(SO; F2) is polynomial, the algebra extension is trivial 
and 

H*fl~kJSO(3) ~F:[w,,]/w~ "~ ---- 0 ®F2[ fi22.~_ l] ®Fz[ f2~_ l [ 2n~0 mod Tk]. 

The next case is k ----- 7 mod 8. Consider TorZ.B°(F2, F2) ~ ^[( - I, en)], n > 
I. Thus TorH'~°(F~, F2)~E°H.SU/SO and so the homology suspension, 
o:QH.BO--.PH.+ISU/SO, is an isomorphism (since H*(SU/SO;F~)~ 
A[Zk I k > 2], there is exactly one primitive in He SU/SO for q >__ 2). Thus there 
is an exact sequence 

0 ~ PH~+I SU/SO--} QH~+I SU/SO--- 0 

and 0--- PH2 SU/SO--- QH2 SU/SO--* 0. Thus comparing the fibrations 

BO ' * , SU/SO 

BO , D.~JSO(3) , SU/SO 

we see that P2k+l transgresses to f~sJ(¥3-1) ,(e2D where H ,  B O ~  



Vol. 66, 1989 HOMOLOGY OF SPACES 123 

F2[el, . . . ,  ej, . . .].  Now recall H ,  BO ~ F2[H, RP ®] with r / -  I : RP ® ~ BO the 
reduced Hopf  bundle. By the previous calculation 

B-~ .fpj(~/3 _ 1 ) .B(~ / -  1 )=  (34J-  1)(~/- 1). 

Thus we consider 

RP ® ~ BO 3~- ~ BO 

in homology where H ,  BO ~ S[/-/ ,RP ®] ( - - S [ ( ~ / -  1 ) , H ,  RP®]) with e, the 

generator o f  the image o f (q  - 1),:  HnRP ~ ~-~)," H~BO. 

LEMMA 4.11 .  

PROOF. 

COROLLARY 4 .12 .  

i fn ~1~0 mod 2 q, 

i fn ~ 0  mod 2 q. 

I f  q -- 1, it is clear and the other cases follow by induction on q. 

0 ifn~/~O mod 2'J 
(3 *J - 1),(en) -- [en/2.j] ~ + (y,)~ i fn ~ 0  mod 2'J 

where ?, is in the ideal generated by e~, 0 < i < n. 

PROOF. Write 34J - 1 - 2'J .(21 + 1). Thus 34j - 1 is the composite 

BO A ~ (BO)21+l (2"j)~+ ~ (BO)2z+l multiP/YBO" 

A . ( e , )  ffi Y.e,,@ • • • @e,~+, and so 

(3 4j - 1).(e,) -- Y2',(e~,). • • 2'~(%÷,). 

T h u s  

(3 4J - 1),(e,) = [e,/2,~]2'~ + (~n) 2,J 

as claimed by Corollary 4.12. 

By the above Corollary 4 .12 ,  it follows that 

(1) H, SU/SOeffiF2[p2, P3," " . ,  P2k+l , . . . ]  with (pj)2' transgressing to ej2,-t 
in the Serre spectral sequence for BO ~ ,  ~ SU/SO, 

(2) P2k+~ is an infinite cycle in the Serre spectral sequence for B O ~  
£~[JSO(3) ~ SU/SO where k ~- 8j - I provided 2 k ~ 0  rood 2'~, 
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(3) (ps) 2 is an infinite-cycle in the Serre spectral sequence for B O ~  
f~ JSO(3)-~ SU/SO, 

(4) P2k + l transgress to [e2m,j]2"J + (others)2,,. 
Now consider E 2 -  H ,  S U / S O ® H ,  BO which we write as a coalgebra as 

follows: 

E 2 ffi A[P2k+~ [ k i n 0  mod 2",]®F2[P~k+, I k - O  mod 2",] 

® F2[ P2, P~,+~ 12k~0 rood 2'1] ® F2[e,] 

with d ~ + '( P2k + ~) ffi [e2k/2,J ] 2,j as [ei ] 2,s, i < 2 k/2'~ has been killed earlier. Hence 

E ® ~ F2[p2+I I k----0 mod 2'~] 

®F2[P2, P2k+~ 12k~0 mod 2"J ] ® F2[e,]/e 2' ffi 0. 

Since H ,  BO and H ,  SU/SO are both polynomial, there is no extension 
problem and 

H,D~JSO(3)~--F2[p2+t I k--~0 mod 2'J] 

® F2[ P2, P2k +t 12kgg0 mod 2"J] ® F2[e,]/e 2' ffi O. 

as an algebra where k ffi 8j - 1. 

5. "Long" Steenrod operations and spheriml homology classes 

In this section we record some observations giving some non-~rivial ele- 
ments in the Hurewicz image for certain spaces. We apply this to the homology 
o f  ~ + k S  n and [ ~ S U ( n ) .  

The input is: 
(1) a commutative diagram 

E , X  

1 1 
B ,/ ,K(G,n) 

(2) a map t~ : ~" + ~A --- B with fa giving a non-zero map on H,( ; Fz), 

(3) B is (k + l )- connected with n > k + I, 

(4) the fibre of 7t is F and the fibre of ¢ is Y. 

L~.M~O, 5.1. If ~k(CJ) is null-homotopic, then there is a homotopy commu- 
tative diagram 
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~'~k+l'~k+IA k'~+'(a) ' ~'~k+IB ' K(G, n - k - I) 

"-- . . . .1  l 
, mY 

and ~k + l(af),factors through H ,  ~ko F. 

PROOF. Since f~k(¢) is null-homotopic, D~Y splits as [ ~ t ' X  

K(G, n - k - 1). The result follows. 

We apply Lemma 5.1 by considering the fibration giving the EHP sequence 

S" ' f l S  "+l ~ ' D.S 2"+t 

Recall that there is a commutative diagram 

RP "-1 , D~S" 

~ n  j ~ '~+lSn+l 

S n ~ ~'~n + IS2n + i 

Next write n ffi 2*(2k + 1) - 1 for k ~ O. Inspecting the cohomology of  RP" we 

get a homotopy commutative diagram 

D.~S" , E 

1 1 
D~+tS "+1 ' K(Z2, 2°k + 2 ° - 1) 

1 1 
~"+1S2"+1 f ' g(z2,2°+lk + 2  ° -  1) 

where f induces  an isomorphism on H " ( ; F 2 ) .  Since ~'~¢(Sqk2") * is trivial on 

/aa'k+2"-i-qK(Z2, 2°k + 2 a - 1 - q) for q _-_ 2 ~, we have proved Theorem 1.8. 

COROLLARY 5.2. The mod-2 reduction of  the Hurewicz image of  the 

adjointforog, in H,_q_l(D~+qs ") is non-zero ifn -- 2a(2k + 1) - 1, k > 0, and 
n - l > q > 2  °. 
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EXAMPLE 5.3. I f  n = 2k, Corollary 5.2 gives that  the adjoint  o f  to, has 

non-trivial Hurewicz image in H,_2f~" + ~S". I f  n -- 4k + 1, then the adjoint  of  

the Whitehead square has non-trivial image in H , _  af~ + 2S". By [H], this is best 

possible in case n = 4j + I. 

Next consider H*CW -- F2[x]/x "+~ = 0. Write n = 2a(2k + 1) - 1 for k >_- 
0. Since Sq2(2"k)x 2"k+2"-1 = X 2"+'k+2°-1 -----X n, there is a commutat ive  diagram 

ECP" , SU(n + 1) , K(Z2, 2~+'k + 2 ~+' - 1) 

1 l ,+,. 
S 2n+l , S 2n+l , K ( Z 2 ,  2 n  + 1) 

Thus i f  q > 2 a +1 _ 1, Dq(Sq 2"*'k) is trivial on 

H2"+'k+2"* ' - l -qK(Z2,  2a+lk + 2 a+l - 1 - q). 

The following now is a direct consequence of  L e m m a  5.1. 

COROLLARY 5.4. I f n  = 2°(2k + 1) - 1 and q > 2 ~+~ - 1, then the com- 

posite 

$2,_ q E,*, f~q+~S2,+t a,*,(0) f ~ S U ( n )  

is non-zero on/ /2 ,_q.  

REMARK. I f  a = 0 or 1, this is best possible by the thesis o f  D. Waggoner 

[Wa]. In particular i f a  = 0 or 1 and q < 2 ~+~ - 1, then the resulting map in 

homology is zero. I f  a = 0  or 1 and q > 2  a + ~ -  1, the map is non-zero in 

homology. 

Somewhat  more generally, one might consider the fibration 

J2'- l S" , f~S" + l h~ , f~S2, . + l 

and ask whether the map  ~k(h~) is an epimorphism in homology. 

LEMMA 5.5. The map ~k(ht,) induces an epimorphism in homology for 

k < 2tn - 2 i f  and only i f  the map 

Fl2,n_k_l~k+2s2'n+l .~ u nk+2¢2,n+l ._~ u ,~k • t-,. F2 ) - - J l 2 t n _ k _ l i ~  o ~a2Sn_k_l~a,t, OO2t_lL} 

is zero. 

PRooF. Consider the map of  fibrations 
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~ ' ~ k + 2 s 2 t n + l  ~ * , ['~k+ls2tn+l 

~ J 2 , - i S "  ' ~ + l S " + l  ' ~k+lS2"+l 

Notice that ~k(A). is zero on/ /2 ' . -k- I  if and only if fik(h[).is onto H2,.-k. We 
claim that [~k(h~). is onto H2'.-k if and only if it is onto all o f  H,~k+lS2"+l .  

It SUfficeS to show that if~k(h[), is onto/-/2,.-k, then it is onto. Since [~k(ht~), 
commutes with Q~, 0 < i _-< k - 1, it suffices to show that there exist elements 
X t wi th  ~k(ht~),(Xl) ffi Qlk(i2,n_k) + others. 

By assumption x0 exists. We claim that setting xl ffi Qk t (Xo) suffices. Consider 
the ( k - 1 ) - f o l d  homology suspension ok-l:Hq~'~kx"'~Hq+k_l~e~ and 
ok- lQl(xo)  ffi [ok-I(Xo)] 2'. Thus ok-lOJ,(Xo) has image ([)2,÷, in H.2,÷,(~S "+1) 
where i is the fundamental class ofH.(D.S" + 1). Since h~,([2'÷') = (i)2, where i is 
the fundamental class of H.2,(D.S "2'+ ~) it follows that 

~k(ht~ ),(Xt) -~ Qtk(i2,n_k) + A 

where o k-  I(A) ffi 0. The lemma follows. 

Next, consider hl : D.S" +i ~ D~2,. +! and recall that (h[).(i  2') = {where {is 
the fundamental class ofH2,.(D.S 2"+ 1). Observe that if n > 2 and n = 2j, then 
S~.~2,- ~)Qt [ 1 ] ffi Q] [ 1 ]. Hence there is a commutative diagram 

~ + l S " + l  ' K(Z2, 2tn -- n - - j (2  t -- 1)) 

['~n+lS2'n+l , K(Z2, 2tn - n) 

Notice that fi(Sq j(2,-i)) is trivial in the right-hand fibration and thus we have 
proved the following result. 

COROLLARY 5.6. The composite 

$2 TM , ~ ' ~ n + l s 2 t n + l  [1~(0), ~+lJ2, isn 

is non-zero in homology i f  n E O  mod 2. 

A similar calculation applies if n ---- 1 rood 2; we omit the details. 
As a final example, consider the fibration S 2 ~  D.S3~D.S s giving S 3 ~  

~ 3 ( 3 )  ~ D~ 5. A direct calculation applied to ~ S  3 ~ ~ S  3 ~ ~4S5(5) gives 

the following result. 
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THEOREM 5.7. There is an isomorphism of  algebras 

H,P~S3~_A[QfQb[l] ,[2-a-b][a + b > o b c d I]®F2[QIQ2Q3Q.Jxl I b + d > 0] 

F ° c > 0 ] .  ® 2[QiQ x ,x  + c 

PROOF. By the above Q[Q~xl transgresses to (QfQb2[l] • [2-a-b])2 + (m)2 

where m is in the ideal generated by (Q['Q~'[I] • [2-a'-e]) 2 of degree strictly 
less than (QfQ~[I]) 2. 

6. Proof of Theorem 1.5 

Let X be a space and assume that there is a map 

FI : X--. BGL(Fq) + ( - - I m J a t p )  

where p is an odd prime and q is as given in Section 1. 

THEOea~M 1.5. Assume that FI induces a split epimorphism on the p- 
primary component of  l-12p_3(ImJ)~-Z/p. Then H,( f~X;Fp)  contains a 
primitioely generated Hopf algebra which is polynomial on infinitely many 
generators i f  n > 2. 

The proof of Theorem 1.5 depends on the existence of a single primitive 
element of infinite height in H,(f~X; Fp). 

EXAMPLE 6.1. Give f~ )S ' ,  the component of the degree I maps in f~'S', 
the structure of an H-space by composition of maps. Thus the stabilization 
map gives a map 

II : f~)S" ~ Im J 

which satisfies the hypotheses of Theorem 1.5 if n > 3. 

LEUI~',A 6.2. Let 11 : X ~ Im J be a map which gives a split epimorphism on 
II2p_,~lm J(p)~ Z/  p. Then H induces a split epimorphism on mod-p homotopy 
(but not necessarily integrally even after localization at p). 

PROOF. Consider a : P2P-2(p)"~ X and & : P2P-2(p)~ X with the first 
Bockstein of ~ given by a, and Ha represents a generator of Fl2p_3(Im J; F~). 
Consider the Adams map A : pN + 2p- 2(p) ~ pN(p) where N > 3. Consider the 
homotopy commutative diagram 
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X 

J 
p2o-2(p) Im J 

\ / 

where & generates II2o_ 2([~)S ~, Fp). Thus 1-1. k "A k, H. a, fl(Fl. & .A k) generate 
I I , ( ImJ;  Fp) where 1/denotes the first Bockstein in mod-p homotopy. The 
lemma follows. 

Notice that the natural map 11 : t2~)S 3--- Im J induces a split epimorphism 
on l - I . ( ;Fp )  but is not even onto II ,  I m J ® Z p  as the p-torsion in I I ,S  3 is 
bounded by p [S]. 

LEMMA 6.3. Consider D~X where X is an H-space. I f  H.(D~X; Fp) con- 
tains a primitive element of  degree non-zero rnod-p, of  infinite height, and 
n > 2, then H.(fl~X; Fp) contains a primitively generated sub-Hopfalgebra 
which is polynomial on infinitely many generators. 

PROOF. Let xEH2j([-~X, Fp) where x is primitive and of infinite height. 
Consider 

Q I * ( x )  f f i  Q 2 p - 2 "  " " Q 2 p - 2 ( X )  

k 

which is defined as long as n > 2 because D~X is a retract of D~+tZX. 
Notice that 

Q1k(x) = cQSP~Q sp~-'. . . QSpQ~x, c ~ o, 

for s = j  + 1. Also Pt.Qlk(x ) -- - (1)(1, spk-~(p - 1) - p)Q'f-lQ~_,(x) and 

( I ' s p k - I ( p - - 1 ) - - P ) ~ { l l  -- S modm°d P i fk  > 2 ' p  if k = 1. 

Since j ~ O  mod p by hypothesis, we have the equation 

I~P t p f  - j  . .  0 1 (*) - , - ,  • P , P , Q h ( x )  = d(xP*+'), d v~ O. 

Let B denote the Hopf algebra which is polynomial on primitive generators 
Qt,(x) and define a map of Hopf algebras 
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o: B G) 

by O(Ql~(x)) ffi Qz~(x). A basis for the module of  primitives in B is given by 
(Qz,(x)) pj and there is at most one of  these in any fixed dcgrcc. Since x 

has infinite height in H . ( D ~ X ; F o ) ,  equation (.) guarantees that 0 is a 

monomorphism on the module of  primitives. Thus 0 is a monomorphism and 

the lemma follows. 

PROOF OF THEOREM 1.5. First consider f~2"FI:D~"X~D~" Im J and 

notice that the first two non-vanishing mod-p homotopy groups of  D~ ~ Im J 

are in dimensions q - 2d and q - 2d - 1 where q -- 2p - 2, 0 _-< d < p - 1 

and n ~ d m o d ( p -  1). Thus we get A : Pc -2d(p)~D~"X such that fF"I-I(A) 

generates FIq_2d(D~ ~ Im J;  Fp) by Lemma 6.2. But by inspection, the mod-p 

Hurewicz map 

: Flq_ 2z(f~02~ Im J;  Fp) -,. Hq_2d(f~02" Im J ;  Fp) 

is an isomorphism. Thus there is a primitive element in Hq_2d(~"X;  Fp) of  

infinite height by Theorem 1.3. Since 0 < d < p - 1, q - 2dis  prime t o p  and 

Lemma 6.3 applies to give the theorem. 

Next consider f12 .  + ~H : P,~" + ~X-~ ~'~" + 1 Im J and assume that n > 1 here. 

Then Lemma 6.2 implies that there is a primitive element in 

Hq tn2,  + t v .  Fp) of infinite height if  q - 2d - 2 > 0. Thus Lemma 6.3 - 2 d -  2~ ~ ~0 .nL, 

applies to give the theorem if q - 2d - 2 > 0. In case q - 2d - 2 = 0, then the 

first non-vanishing mod-p homotopy group of  D~ ~ + ~ Im J is in degree 2p - 2 

and Lemmas 6.2 and 6.3 apply to give the theorem. 

Finally assume that n -- 1. Thus there is a map ? : p2p-3(p)  _., F~o X such that 

(fffl)(?) represents a generator of  l-I2p_ 3(f~ Im J;  Fp). Thus there are primitive 

elements v, u in degrees 2p - 3 and 2p - 4 such that u and v are mod-p 
spherical. Consider the polynomial algebra generated by ]~Qk ~ (v) and notice 

that there is a sequence of  Steenrod operations P~ with P~]~Q~_ l(v) -- e(]~ v)P~, 

e ~ 0. This suffices and the theorem follows. 
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