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ABSTRACT
Very little is known about H,(Q"X) when n is larger than the connectivity of
X. In this paper we calculate this when X = Q*S® and n =1 or 2, and when
X =JU(q) or JSO(3) and n is arbitrary. Some information is also given when
X is a sphere.

One approach to studying the homotopy theory of a space X is to consider
the n-fold loop space on X where n may be much larger than the connectivity
of X. Of course, very little is known about the homology of a space which has
been looped beyond its connectivity. In this paper we shall study this problem
for certain spaces X.

Write Q3X for the component of the base-point in Q"X. We shall give an
explicit calculation of H,Qj(Q5S™) for n = 1 and 2. Write JU(g) for the fibre
of ¥ —1:BU—~BU and JSO(3) for the fibre of y*— 1:BSO—~BSO. We
compute the mod-p homology of QJU(q) and the mod-2 homology of
QEISO(3). One consequence is that if /2 X —JU(q) is a map which is a split
epimorphism on the first non-vanishing homotopy group of JU(q) localized at
the “usual” primes (defined after 1.4), then H, Qf X has a primitively generated
sub-Hopf algebra which is a polynomial algebra with infinitely many genera-
tors for all n = 2.

We give some information on H,(Q4*kS"; F,) for some values of n and k
obtained from James’ filtration of QS". All of this is closely related to the
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Whitehead square, w, = [i,, i,], @,: S !'—S", and its generalizations. For
example, by adjointing w, one gets a map @, : $2*~!77— Q45" and one might
ask if this map is non-zero in mod-2 homology. This “low-dimensional”
information then has global implications for the structure of H,(Qj*S"; F,)
(at least in the examples where we can compute answers). Thus we give some
estimates on g such that @, is non-zero on H,,_;_,( ; F,). The situation here
is that this last map is non-zero after relatively few loops except in the possible
Arf invariant cases: n =2* — 1. We include one specific example here by
calculating H (Q§S? F,). The mod-2 homology of Q3 *'S” was computed by
Tom Hunter [H].

It seems worthwhile to make the following observations: In the examples
where we are able to do explicit calculations, the homology of Qf*t/Z"X
contains a polynomial algebra with infinitely many generators. Furthermore
the nilpotent elements have bounded order of nilpotence and this order is a
function of ¢. For example, H,(Q}*'S"; F,) contains an exterior algebra, but if
x2# 0, then x' # 0 for all ¢ in our examples.

We thank Martin Peim for his suggestions concerning JSO(3).
We would like to take this opportunity to express our fondness for Alex
Zabrodsky both as a mathematician and as a wonderful human being.

1. Statement of results

We restrict attention to the prime 2 for Theorems 1.1 and 1.2.

THEOREM 1.1. H*(QE*1S%; F,) is isomorphic to a polynomial algebra with
primitive generators. Thus H (Q§*'S®; F,) is isomorphic to an exterior
algebra as an algebra.

THEOREM 1.2. H*(Q@*2S>; F,) is isomorphic to a tensor product of poly-
nomial algebras and exterior algebras. All even dimensional generators are
polynomial and “most” odd dimensional generators are polynomial.

We remark that explicit generators in Theorems 1.1 and 1.2 are given in
their proofs. The situation is different for H (QF *3S=; F,).
In the next theorem, p is any prime.

THEOREM 1.3. There is an isomorphism of algebras

H@IU@s F)~ @ (N fu-1®F[xul)

k_y
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where fy,_, is the unique primitive in the image of H,,_,(Q3"*'BU; F,)—
Hy._ (Q8"TU(q); F,) and xy has non-zero image in Hy(Q3"BU; F,).

THEOREM 1.4. There is an isomorphism

H Q" 'TU@; F)~ @ (Axus 1®F,[xu))
pigntk-1)
which is one of algebras if p > 2 where xy is in the image of H,(Q}"BU; F,)—~
Hy(Q3"~'IU(q); F,) and xy ., has non-zero image in Hy, . (Q3"~'BU; F,).

Next fix an odd prime p and choose a prime ¢ such that ¢' — 15%0( p) for
0<i<p—1and v,(g?~'—1)=1 (and recall that infinitely many such ¢
exist). Assume that X is an H-space and there is an A-map f: X — JU(gq) such
that f induces a split epimorphism on the p-primary component of
I, 3 JU(g)=Z/p.

THEOREM 1.5. Assume that X satisfies the above hypotheses. Then
H (Q} X; F,) contains a primitively generated Hopf algebra which is polyno-
mial on infinitely many generators if n = 1.

Next, we give the mod-2 (co-)homology of QEJSO(3).

THEOREM 1.6. The mod-2 (co-)Yhomology of QkISO(3) is given as follows:

(i) If k=1 mod 8, H*Q§JSO(3) is isomorphic to H* Spin ® H*SO/U as an
algebra.

(ii) If k=2 mod 8, H*QkJSO(3) is isomorphic to H*SO/U @ H*U/Sp as a
vector space.

(iii) Ifk =23 mod 8, H*QkJISO(3) is isomorphic to H*SU/Sp @ H*BSp as an
algebra.

(iv) If k=4 mod 8, H*QkISO(3) is isomorphic to H*BSp@ H*Sp as a
vector space.

™) If k=5 mod 8, H*QJSO(3) is isomorphic to H*Sp® H*Sp/U as a
vector space.

(vi) If k=6 mod 8, H*QkJSO(3) is isomorphic to H*Sp/U @ H*UO as a
vector space.

(vii) Ifk = 8j — 1, then H Q§ISO(3) is isomorphic to

Fyl P31 | n=0 mod 21]Q F[ ps, Pz, | 2n5£0 mod 2%] @ Ffe, )/e?’

as an algebra where the degree of p; is i, the degree of e, is i and 2V is the largest
power of 2in 39 — 1,
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(viii) If k = 8j, then H*QEJSO(3) is isomorphic to
(Fiw,V, Y® Fi fEr- 1 |® Fi fin-1 | 2n5Emod 2%]
as an algebra with degree(w;) = i and degree( f;) =i.

Turning to other specific examples, we consider H,Q% %S, Here of course
one must first consider the fibrations giving the EHP sequence. Recall the
second James-Hopf invariant A, : QS**!'—QS?*! together with the j-fold
composite of h,,

hﬁ . QS"H—'QSZI"H.

The 2-local fibre of A is J,i_,S™, the (2/ — 1)-st filtration of the James
construction JS”. Thus one obtains a fibration

Q'”k(h{) . Qg+k+lsn+l__,gn+k+ls21n+l

where we assume that n + k + 1 <2/n to insure that the base is simply-
connected. Thus the fibre of Q***(hj) is Qi+X(J,»_,S") and there is a
fibre sequence

ﬂ"‘""(A)
Qn+k+2S2hx+1 > QS"'k(Jz/_,S") N Qs+k+]S"+l Qn+k+lszfn+l_

LEMMA 1.7. The Serre spectral sequence in mod-2 homology for Q" **(hj)
collapses if and only if Q" +*(A), is zero on Hyjy iy —(n1x+2( 5 F2)

Thus the failure of the collapse of the Serre spectral sequence is measured by
the mod-2 Hurewicz image of the generalized Whitehead product. We show
that this image is frequently non-zero.

THEOREM 1.8. Let n=2°Q2k + 1) — 1 with k > 0. Then the Whitehead
square @, has non-trivial Hurewicz image in H,_,_(S5+S"; F;) for
n—1>qz2°

Thus, for example, if n = 4j + 1, then w, has non-trivial Hurewicz image in
H,_(Q3*2S"; F,) and by [H] zero image in H, _,(Q3*'S"; F,). Also, if n = 2j,
then w, has non-trivial image in H, _,(Q2*'S™; F,). Of course by desuspending
the Whitehead square one obtains other classes in H, (Q"*7:S"¢; F)),
but we shall not pursue this connection to the vector field problem here. As a
sample specific calculation we illustrate how the Whitehead square forces
relations in the homology of Q§S® and, in general, in H (Q§"S*"~"; F,)
as in [H].
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ExaMPLE 1.9. There is an isomorphism of algebras
H(Q3S% F) = NQ{Q}[1]|a + b z 1] ® F{QfQ}05Q%x, | d + b = 1]
@ F[(Q{Q¢x,)% x? | c +d >0].
Thus the image of H,(Q3S% F,) in H (Q§S% F) is the exterior algebra given

by A[@fQiI1]|a + b 2 1].
We remark that the Serre spectral sequence for

Q"“‘(h{) : Qg+k+lsn+l _,Qa+k+lszin+l
never collapses for j = 2 and k = 1 by the following proposition.

ProposiTION 1.10. If kz1, j=2, and n+k+2<2'n+1 then the
composite 0,
Qe +4a),

+k+2Q2/n+1
Hz’n+1—(n+k+z)9" Al Hzln—n—k93+k(~’21—1s")

; |
\ Hz’u—n—k(93+k-’2’—ls";Fz),

The reason for mentioning Proposition 1.10 is that one can iteratively fibre
Qpt%+18"+! into spaces which one can eventually identify. These calculations
suggest that there should be a “reasonable” spectral sequence abutting to
H (Q2*kS™; F,) with a computable E'-term.

is non-zero.

2. The homology of Qi*°S®, i =1, 2

The methods here are to consider the Eilenberg-Moore spectral sequence
abutting to H*QX with E, = Torg(F,, F;) (and where X is assumed to be
simply-connected). Recall that if H*X is a polynomial algebra and X is of
finite type, then the spectral sequence collapses. The work here is to deter-
mine the precise algebra extension by using the action of the Steenrod
operations.

Let X'be an co-loop space and x € H X. Define three functions &, A, and A’ as
follows:

(a) If g=1 mod 2, then &(x) = 0 while if ¢ = 2k, then &(x) = Sg%(x).

(b) If g=0mod 2, then A(x) =0 and if ¢ = 2k + 1, then Ax = Sg’(x).

(c) If g=1mod 2, then A’(x) = 0 and if ¢ = 2k, then A’x = Sgk~'(x).
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The following lemma is immediate from the Nishida relations:

LEmMMA 2.1.
_ | Qinéx ifi=0mod 2,
® o {0 ifi=1mod 2.
Qi—ynXx + Queneéx  ifi=1mod 4,
(b) AQix = 1Qi-12X ifi=3 mod 4,
0 ifi=0mod 2.
(c) A’Qx — (l/2 - 1’ 2)Qi/2+l¢x + (1/2) I)QiIZA-x + Qi/z*lllx l_flEO m()d 2’
' 0 ifi=1mod 2.

Wellington gave a basis for the module of primitives PH, QF S as follows
[Wl:letI=(i,..., i), k=1, be an admissible sequence and so0 j; < ;. I is
said to be even if all of the i; are 0 mod 2. 1 is said to be odd if at least one i; is
1 mod 2. Next, define elements f; € PH, Q5S> as follows:

(i) If iy=1mod 2, then f; = Q,f, where I =(J, i) and f, is the Newton
polynomial in the elements x; = Qi[1] *[ — 2].
(ii) Let I equal (J, ij, {41, - .., i) With (41, . . ., ) even and §;=1 mod 2.

Then f; = Q;Qy,,— Qaipramiy* * * Qrin—i S
THEOREM 2.2 [Wellington]). The f; above are a basis for PH Q§S*.
LEMMA 2.3. The map A: PH Q3S*— PH QFS® is an epimorphism.

PROOF. Since 4 is given in terms of Sg%, it preserves primitives and the
Nishida relations give Sg&~'f,,_, = fi. Notice that Lemma 2.1 gives

Q(i.l)/zlx ifi=1mod 2,

l A =
Q:x {0 ifi=0mod 2.

Consider f; in case (i) for the definition of f;. Here

A(Q2i1+lQ2iz+l ce Q2ig_|+ljiig— ) =f-
In case (ii) above for the definition of f; we have
ﬁ = QJQZ:’,H—i, QZi,n—i; ° ‘in,—i,ﬁ,»
with j; — 1 mod 2. Write
X =041 'Q2i,_1+lQ4i,+|—2i,+l . 'QAi.—2i,+1ﬁx)—l-
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Notice that A(x) = f; and that x is primitive although it may not be one of
Wellington’s basis elements. The lemma follows, but we remark that A, of
course, has a kernel.

Wellington proves that H*QFS> is a polynomial algebra with generators
given by (PH QS )*. As QF S« splits as RP® X QFS*(1), the cohomology of
QS=(1) is also polynomial. By the collapse of the Eilenberg-Moore spectral
sequence abutting to H*Qg+!1S>, we get

E, = N[Z~(PH Q85°(1))*].

Thus to show that H*Qg *1S* is polynomial algebra it suffices to show that the
squaring map on the ( — 1)-line of the Eilenberg-Moore spectral sequence is a
monomorphism. As the squaring map is dual to 4, this follows from Lemma
2.3. The above gives that there is a choice of polynomial generators in the
image of the cohomology suspension and thus H*QF*'S> is a primitively
generated polynomial algebra and Theorem 1.1 follows.

LEMMA 2.4. There is a 2-local equivalence QF *'S® ~ RP> X Q&+1§*(1)
and H*Qy*'S*(1) is a polynomial algebra.

Proor. There is a multiplicative map Qg *'S®— RP* giving an isomor-
phism on IT,. It suffices to exhibit a map RP* — Qg *'S> inducing an isomor-
phism on IT,. Consider 7n:S'— Q%S> representing n and w : RP>— QS
inducing an isomorphism on II,. The standard difference construction using
the composition pairing and additive loop structure gives a map f: S' A RP*—
Q) S= inducing an isomorphism on IT,. Adjointing f gives the desired map
and the lemma follows from Theorem 1.1.

We now mimic the proof of 1.1 to prove 1.2. The Eilenberg-Moore spectral
sequence abutting to H*Qg+2S® with E; = Toryug=+15=(;)(F>, F) collapses by
Lemma 2.4. We claim that the squaring map is a monomorphism on all
elements of even degree. Notice that the squaring map is dual to A’ here. Let
Q, f, be an element of Wellington’s basis. Assuming that Q, f; is of even degree,
wehaveI =(iy,...,0_)), i=h=-++=i;_;=0mod 2,and i;=1 mod 2 for
some j with 2 <j <k. Thus Q,Q; ., - - @,_, i =A(y) for some y by Lemma
3.2. Thus

MQuis2e Qo420 ¥)=Q "+ 'Q;;-,Ay = O fi-

Assuming that Q, f; is of odd degree, then i, is odd and i|=i=-...=
i;_;=1mod 2 with {;=0mod 2 for j =k — 1. Then
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A(Qaiy2e - in,_,+2y) =0 Qi,_./l'J’-

But Q- - - Q,_, fx = A’y for some y with j;=0 mod 2.
Now assume that i,=i,=---=i,=1mod 2. Then

A'(in.+2' ° in._,ﬁc) = Qi,' v Qik_,l'ﬁc =0

and so the dual of Q, f; in this case corresponds to exterior generators in
H*Qe 28,

We remark that this calculation is consistent with the fact that IT1,Q¢ *2S° =
Z/8 and thus the cup square of elements in H'(Qg+25=; F,) is zero.

To carry out further calculations one must compute possible differentials in
the Eilenberg-Moore spectral sequence. The differentials arise on divided
power elements in

Torpzlx]/xf‘_o(F 2 F 2)'

As a sample, one might consider the universal model for such differentials by
considering the loop-space of E, the fibre of

K(Z/2,n) — K(Z/2, n2%).
0]
For example, if k = 1, one can compute some differentials by a factorization of
Sq", n # 27, as the study of the Whitehead product in [BP]. For the time being
we just include the remark that there are non-zero differentials in the Eilen-
berg-Moore spectral sequence computing H*Qg +35,

3. The homology of Qi(JU(q))

Consider y? — 1: BU—BU with homotopy theoretic fibre JU(q). Write
fin=Q"(w?—1). As y? induces multiplication by g* on IlyBU, f,,:
Q3BU — Q¥BU induces multiplication by ¢"** — 1 on 7, Q}"BU. Write
H,BU = H,(BU; Z) and recall that the module of primitives PH,BU is
isomorphic to Z in degrees 2k with a generator given by the Newton polyno-
mials in x,, where x, is a choice of generator for the image of H, BU(1)—~
H,,BU. Thus

() p,=x;and

(i) pu=(—D**'koy + 2}‘_‘1‘( = 1) Doy
Since the Hurewicz map ¢ : I1,,BU — H, BU is a monomorphism with ¢(1) =
k'( px), we have

(iii) (fo2n)a(P2) = (@"** = 1)(Pu),
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(iv) (fo2n)a(x2) = (g"*' — 1)(xy), and
) Uaan) o2 |
=((= D@+ — 1) — (fo2a)a(EFS(— 1)+ 0+ Pr )]
Next, write H,SU = A[xy ] where x; is of degree and k = 1. Since f; 2,41
induces multiplication by ¢"** — 1 on I1,,_,Q3"*'BU, we have
(V1) fozn+1a(Xu—1) = (@"** = Dxye_y.
Since X, = 0,(x,,,) where g, is the homology suspension,
(Vii) fo2na(R2e) = (@" % — D)Xy
Thus the next lemma follows.

LEMMA 3.1. After reducing mod p, these formulas hold:

wy=l 0 rl@ -1
(f;ﬂn) (ck) = {unit-ck ifpl(q"*" _ l)
and

0 ifp |(g"** - 1)

(oandelar) = {unit-xzk pA(@t —1).

Next, consider the map of fibrations

U— JU(g)— BUX=S BU

N

U — &« — BU—lvBU

Passing to connected covers and looping, we get

Q@+ 'BU — Q'TU(q)— Q'BU

Ik

Q+'BU > » — QFBU

As ¢, € H*(Q}"BU; Z) is the transgression of ey, _; € H*~(SU; Z), naturality
of the Serre spectral sequence and Lemma 3.1 gives that e,,_, transgresses to
Jaa(c) in the Serre spectral sequence for computing H*Q3*JU(g). Reducing
mod p one has (a) e, _, is an infinite cycle if and only if p divides ¢g"+* — 1 and
(b) ey, transgresses to a unit multiple of ¢, if and only if p does not divide
¢"** — 1. Thus we have
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E{*E( 0%y A[eZk_1]®F,,[ck]>®( X )A[eZk_1]®F,,[ck]>

pr@ k-1 plgn k-1

as a differential algebra with
Ay~ (€3 -1) = unit - ¢;

provided p4(g"** — 1). Since Aley,]® F,[c,] is acyclic in these cases, one
has

Ew"‘*z( & A[ezk_1]®F,,[ck]).

pligntk—1)

As the homology of SU is exterior and the homology of BU is polynomial, we
have proved the following theorem.

THEOREM 3.2. There is an isomorphism of algebras
H@IU@) F)~ @ Alfyu-1®F,[xu]
pligntk-1

where fy, _, is the unique primitive in the image of Hy, _ (Q3"*'BU; F,) and xy,
has non-zero image in Hy (Q}"BU; F,).

Rephrasing the dimensions above, one has an algebra isomorphism
H (@8I0 F)= & Aty -2 ®F, [ty
J

where |u;| =i, |y|=i, ¢g=2p—2, and 0=d<p-—1 with n=
dmod (p — 1). Thus the first two non-vanishing groups for H,(Q"JU(g); F,)
are in degrees ¢ — 1 —2d and g — 2d.
To compute the homology of Q2**!(JU(q)) consider the map of fibre
sequences
1

sU — > BSU—— BSU
mw—nl l l lw’—l
sU JU(q) »BU ——— BU

to get maps of fibrations
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Q-(Z)n—l(su') * —» Q»-1BU

of ||

Q- '(SU) — Q" JU(q) — QF"'BU

and

BU * » SU

o |

BU — Q}"~'JU(g)— SU

Recall that H,(SU; Z) is an exterior algebra with generators xy, ., k= 1,
which transgress 10 x,, in Hy,(BU; Z) in the Serre spectral sequence for the
path fibration. Thus when considering the Serre spectral sequence for

(C)) BU— Q% ~JU(q)—SU

one has that xy; ,, transgresses to ( f;2,)4(*2). By reduction mod p together
with Lemma 3.1, we have

(1) X+, is an infinite cycle if and if p | g"** — 1, and

(ii) x4 transgresses to unit- x, modulo decomposables if p4g"+* — 1.
Thus the Serre spectral sequence in mod p homology has the form

E%...s( ® A[x2k+1]®Fp[xzk]>®( ® A[x2k+,]®F,,[x2k1)
prg k-1 pl@htk-1)

with

0 ifp | (g"* — 1),

d(x”‘“)={unit-x2k if pA(g"+e —1).

Thus one has

Ep = ® Alxz +1]® Fplxu].
pl@tk-1

If p is an odd prime, there is no problem in determining the algebra extension.
If p =2, it is conceivable that a representative of x,, ., does not have height 2
in the Pontrjagin ring. However, by the above we have that the Eilenberg-
Moore spectral sequence with

El‘ .= Tor+IUGE,, F,)
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abutting to H(Q%"~'JU(q); F;) collapses. Thus (X, ,)* is a multiple of the
unique primitive in degree 4k + 2.
Theorems 1.3 and 1.4 follow.

4. The mod 2 cohomology of Q3 JSO(3)

In this section we prove Theorem 1.6. Throughout this section all coef-
ficients are in F, unless otherwise stated. Write X (k) for the k-connected cover
of X. Recall that JSO(3) is the fibre of y* — 1 : BSO— BSO. The next lemma
follows directly from the action of y* on II,BSO together with real Bott
periodicity: y3 acts by multiplication by 1 on I, for =1 or 2 mod 8 and is
multiplication by 3% on I, BSO.

LeMMA 4.1. Ifk =0 there are fibrations
(1) SO(k)—=JSO(3)(k) —~BSO(k) if k=3 mod 4,
and
(2) SO(k)—ISO(3)(k) —~BSO(k + 1) if k=3 mod 4.

Next notice that if k=0, 1 mod 8, then the map i : JSO(3) — BSO gives an
epimorphism on I, , ;. Since a multiplicative fibration QI1: QF — QB giving
an epimorphism on I, has trivial local coefficients, one has the next lemma.

LEMMA 4.2. There are fibrations with trivial local coefficients given by
(1) Q5SO—QEISO(3)— QEBSO if k=3 mod 4,

and
(2) Q5SO—QEISO(3)—~ Q*BO(k + 1) if k=3 mod 4.

The calculation of the additive substructure of H*(Q*JSO(3)) if
k=£0, 7 mod 8 is a formal consequence of Bott periodicity together with some
remarks about Hopf algebras. To do this we recall the spaces occurring in real
Bott periodicity together with their cohomology. References are [B] and [C).

(0) BO=BSO X RP>,

(1) Q(BSO) =~ SO =~ Spin X RP>,

(2) Q(Spin) =~ SO/U,

(3) Q(SO/U) =~ U/Sp=SU/Sp X §',

(4) Q(SU/Sp)=BSp,

(5) (BSp)~Sp,

(6) €x(Sp)=Sp/U,

(7) Q(Sp/U)=U/O =SU/SO X S,

(8) Q(SU/SO)=BO.
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The relevant cohomology groups are given in [C]:

(i) H*BO=Fjw, |i = 1],

(i) H,SO=A[e; |i= 1], H*SO=Fy[ f,,_,|i=z1] [17-08],

(iii) H*SO/U = Fylcy..|k=0]  [17-21],

(iv) the integral cohomology of U/Sp is torsion free with H*(U/Sp; Z) =
Alag .+, | k = 0] with gy, primitive ~ [17-07],

(v) the integral cohomology of BSp is torsion free and H*(BSp; Z) =
Zlpa|kz1]  [17-09),

(vi) the integral cohomology of Sp is torsion free and H*(Sp; Z)=
Al faers| k Z 0],

(vii) the integral cohomology of Sp/U is torsion free and primitively gener-

ated with

H¥Sp/U; Fy) = A[x}, X4y .. . X - . ],
H,(Sp/U; Z) = Z[uy 2 |k Z0]  [17-09),

(viii) H*SU/SO = A[z; l kz2] [17-24],
HUO=F][p,ps-.-; Pi+15---] [17-22].

ReMArk. Throughout the above statements, the subscript of a symbol
gives its degree.

Next we record some lemmas implied by the cohomology above.
LEMMA 4.3. Let Qf: SO— SO be a 2-local equivalence. Then (Qf), = 1.

Proor. Since H,SO = Ale;] and (Qf), is a multiplicative isomorphism,
(Qf)(e;) = e; + A; where A, is decomposable. Notice that (Q2f),(e,) = e, and
we may inductively assume that (Qf),(e;) = e, for i <N. A calculation with
the coproduct then gives that Ay is primitive. Since Ay is decomposable, this
means that Ay = 0 as PH, SO has basis

Dusr1=€x4t . X 6;€;.
<i<j
LeMMA 4.4. Let f: X — X be a map of 1-connected spaces with f* = 1 and
H*X is a polynomial algebra. Then (QQf)* = 1.

ProoF. The Eilenberg-Moore spectral sequence with E, = Torgey(F,, F,)
abutting to H*QX collapses. A choice of multiplicative generators for H*QX is
in the image of the cohomology suspension. The lemma follows by naturality.
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LEMMA 4.5. Let Qf: QX —QX be a 2-local equivalence where QX is
Sp, Sp/U or SU/Sp. Then (Qf), = 1.

PROOF. (Qf)*(Q4c+1) = Gur+18S Qg is primitive. (Qf)*(fox+3) = fars3 a8
Juk+3 is primitive. A similar calculation applies to H*Sp/U. The lemma
follows.

LEMMA 4.6. Let (2f): BSp— BSp be a 2-local equivalence. Then (Qf)* =
1 (in mod 2 cohomology).

Proor. Consider Q*f: Sp—Sp. By Lemma 4.5 (Q*f), = 1. As H,BSp is
isomorphic to a polynomial algebra as an algebra, the lemma follows.

We use the above to compute H*Q3JSO(3) for n=£0, 7 mod 8.

LEMMA 4.7. Let Qf: QX — QX be a 2-local equivalence with (Qf)* = 1.
Then (Qf —1)*=0.

ProoF. Since (Qf)* = 1, this follows immediately from the definition of
the conjugation in a Hopf algebra.

THEOREM 4.8. (i) Ifk=£3 mod 4 and k=£0, 7 mod 8, the cohomology Serre
spectal sequence for

QESO— QFISO(3)— Q*BSO

collapses.
(ii) If k=3 mod 8, the cohomology Serre spectral sequence for

QLSO — QEISO(3)— Q¥BO(k + 1)
collapses.

Proor. Consider the case k=1mod 8 and the path-space fibration
QSpin — #— Spin. Since H*Spin= F,[ f;;,_,|i = 2], one has that there is a
choice of polynomial generators for H*QSpin = F,[c4.,] which are in the
image of the cohomology suspension (by collapse of the Eilenberg-Moore
spectral sequence). Next recall that Q% ~'(y? — 1) : BSO — BSO factors through
BSpin to give a map of fibrations

Q(Spin) — QXISO(3) — SO

| 1 ln(f.)

Q(Spin) > * — Spin
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Thus the Serre spectral sequence for the upper fibration collapses by Lemmas
4.3 and 4.7 as Q*(y® — 1)* is trivial. Finally, the algebra extension is trivial as
H*QSpin is polynomial.

Next consider the case K =2 mod 8 and the path space fibration Q(SO/U)—
»— SO/U. The argument is similar to the above: (1) there is a choice of algebra
generators for H*Q(SO/U) in the image of the cohomology suspension,
(2) Q¥(y® — 1) : SO/U — SO/ U is trivial in cohomology by Lemmas 4.4 and 4.7
as Q(Spin) =~ SO/U, and (3) there is a map of fibrations

Q(SO/U) =~ QSO —— QEISO(3) — Q¥BO ~SO/U

1 g

Q+1BO - QBO

The next case is k=3 mod 8 where we consider the fibration Q{SO—
Q§ISO(3)— QEBO(k + 1). By Bott periodicity, Q§BO(k + 1) =~SU/Sp and
Q%SO == BSp. Thus there is a map of fibration sequences

QkSO * » Q¥BO(k + 1) ——— QEBO(k + 1)

QE+i(y3— 1)] l 1 l lﬂ’(v’— 1)

QLSO — QEISO(3) — QEBO(K + 1) =5, QkBO(K + 1)

As H (BSp; F,) is a polynomial algebra, the Milnor spectral sequence with
E? = Tor-®»F)(F,, F,) abutting to H,(SU/Sp; F,) collapses. Thus there is a
choice of primitives for H,(SU/Sp; F) in the image of the homology suspen-
sion. As Q*+)(y® — 1) is trivial in cohomology by Lemmas 4.6 and 4.7, the
algebra generators in homology of QfBO(k + 1) are infinite cycles. Since all
fibrations here are multiplicative, the result follows.

Assume that k=4 mod 8 and consider the Serre spectral sequence for the
fibration Sp—*— BSp. An inspection shows that the algebra generators in
H*Sp transgress. (Note that Ext 5, (F;, F,) collapses and abuts to H*BSp.) As
Q%(y?—1) is trivial in (mod 2) cohomology by Lemma 4.6 and 4.7, the
collapse follows by comparing the following map of fibrations:

Sp— Q4JSO(3)— BSp

| ]

Sp * » BSp
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Assume that k=5 mod 8 and consider the fibration Sp/U — QJSO(3)—
Sp. Next consider the path space fibration with Cotor?«»#)(F,, F,) abutting to
H (Sp/U; F,). Notice that the spectral sequence collapses and so the exterior
generators for H,Sp all transgress. Comparing the fibrations

Sp/U — * » Sp
Qh+i(ys— l)l l ll
Sp/U— Q5ISO(3)— Sp

we see that the elements in the homology of Sp are infinite cycles in the Serre
spectral sequence for the bottom fibration by Lemmas 4.5 and 4.7 together
with Cotor?s%(F,, F,) = H ,(Sp/U).

Assume that k=6 mod 8 and consider the map of fibrations

Q(Sp/U) — QEISO(3) Q(Sp)
| e
U/0 =Q(Sp/U) — * — (YSp) == Sp/U

Since H*(Sp/U;F,) is polynomial and H*U/O is isomorphic to
Torsyy(Fy, F,), the algebra generators for H*U/O are in the image of the
cohomology suspension. Since Q*(y? — 1) is zero in (mod-2) cohomology, the
Serre spectral sequence in cohomology collapses for the top fibration.
Finally, we consider the cases k=0, 7mod 8. Let n —1:BO(1)—=BO
denote the reduced Hopf bundle. Thus y3(n —1)=#>*—1=n—1 as the
square of a line bundle is trivial. Thus there is a homotopy commutative

diagram
Rp®
N
> BO

n—
BO

and so y3 = 1 as H,BO is the symmetric algebra on (7 — 1), H RP=. [Recall
that y3(a + B) = y°a + y3B.]) Thus as in [FP] the Serre spectral sequence for
SO—JSO(3)— BSO collapses.

Write B : BO — Q§*BO for the Bott equivalence and let f: X — BO specify a
stable bundle over the finite complex X and let B,:S%* —BO denote a
generator of I1;, BO == Z. The isomorphism
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B,:[X,BO]— [S% A X, BO}
is specified by sending f'to 5, ® f. Compute the composite 8( f) given by

x—L Bo - QiBO 5V kg0 -2 BO

as follows (where 8 = B~ o Q% (y* — 1) o B):
(@) B(N)=aB®f,
(ii) Q¥(y’ — NB(N) =W’ - Na®f) =W’ ®y’) — (a®f), and
(iii) 6(S) =B '[Ya®@y’f— (@®f)]
=B '[3*%(a®y*f) — («® /)]
=3%’N-f.
Since y3 =1, 6*=(3* —1)*. Finally compute 6* on the total Stiefel-
Whitney class W = Z,, w;: In cohomology & has the same effect as (34 — 1)*
because (y°)* = 1, and so

O*(W) = (W),

Thus if kK = 0, 8* is trivial. But if kK > 0, 8* is non-trivial. Write v, for the 2-adic
valuation of 3% — 1, the largest power of 2 dividing 34 — 1.

LEMMA 4.9. 0%(W)=Z,.o(w; + A,)*™* where A; is in the subalgebra of
H*(BO; F,) generated by w,, ..., w;_,.

PROOF. 3%~!=2"%.0dd number = 2" -q. Thus

) = e =y = 3 w)'.

iz0

Since ¢ is odd, it follows that
GX (W) = (Z(wi™) LY Zwi™) = Ewi* ) Ewi™)
where ¢ = 2L + 1 and the lemma follows.
The lemma implies the following corollary.
COROLLARY 4.10.

0 if ns£0 mod 2%

0*(w,) =
(#) {ug-"‘+ﬂ.}" ifn=j2%

where A, is in the subalgebra generated by wi*, . . ., wi™,.

Next consider the Serre spectral sequence for
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SO — Q§ISO(3) — BO.
Since y* — 1 factors through BSO, we get
SO — Q8ISO(3)— BO

L

SO — * BSO

Hence the Serre spectral sequence for the upper fibration is as follows:
E,=F[w,QF)([ f,-1], nz=l.
As a differential coalgebra
E, = (F{w?*]Q Fyw,J(w?* = 0)) @ (F fx_ (1 ® Fyl fyn—1 | 21520 mod 2%]).

By the above din( fipn_) is the class of w?™ as w?*, i < j, has been killed earlier.
Since Sq/2*”'(W?* + A?*) = 0, it follows that ( f,»_,)? is an infinite cycle. Since
the differential coalgebra A[x]® F,[dx] is acyclic, we have

E,=(Fw,Jw¥* = 0)QFy[ fiu_]® F) f3,_1 | 2150 mod 2]

as an algebra. Since H*(SO; F,) is polynomial, the algebra extension is trivial
and

H*QYISO(3) = Fofw, ywZ* = 0@ Fyl fin_ ] Fyl fn_1 | 27540 mod 2%].

The next case is k =7 mod 8. Consider Tor«®(F,, F)= A[(— 1, ¢,)},n =
1. Thus Tor#sB(F,, F,)= E°H,SU/SO and so the homology suspension,
0:QH,BO—PH,,,SU/SO, is an isomorphism (since H*(SU/SO; F;)=
Az, | k = 2], there is exactly one primitive in H,SU/SO for ¢ = 2). Thus there
is an exact sequence

0—PH,;,,SU/SO—QH,;,,SU/SO—~0
and 0— PH,SU/SO— QH,SU/SO — 0. Thus comparing the fibrations
BO X SuU/SO

ac I

BO— Q{JSO(3)— SU/SO

we see that p,., transgresses to Q¥(y’—1),(ey) where H,BO=
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Ffe,,...,é¢;,...}. Nowrecall H BO = F,[H RP*] with # — 1 : RP* —BO the
reduced Hopf bundle. By the previous calculation

B~ Q¥(y*—1)-B(n—1)=(3Y — 1)(n - 1).
Thus we consider

34—}

RP*—BO — BO
in homology where H,BO == S[H ,RP*] (= S[(rp — 1) H, RP*)) with e, the
generator of the image of (n — 1),,: H, RP~ 22 H BO.
LemMA 4.11.

2(e)= {o if n=£0 mod 2°,
T lew)*  ifn=0mod 29.

Proor. If g =1, it is clear and the other cases follow by induction on gq.
COROLLARY 4.12.

{ if n5=0 mod 2%
[e,,,z.,]”‘ + (Yn)w ifn=0mod 2"

where y,, is in the ideal generated by e;, 0 <i <n.

BY—1Dy(e)=

PROOF. Write 3¥ — 1 =2%.(2/ + 1). Thus 3¥ — 1 is the composite

BO— (BOy+! 225 (BOy»+1 22¥ g,
Ae,)=%¢,8:--Qe,, and so
(3Y — 1) (e,) = Z2%(e,)- - - 2"(e,, ).
Thus
(3Y = 1)y(en) = [€n]2" + (72)*
as claimed by Corollary 4.12.

By the above Corollary 4.12, it follows that

(1) H,SU/SO=F)[p;, D3, ..., Pa+1> - - -] With (p;)* transgressing to e _,
in the Serre spectral sequence for BO—»— SU/SO,

(2) pa+, is an infinite cycle in the Serre spectral sequence for BO—
QtJSO(3)— SU/SO where k = 8j — 1 provided 2k=£0 mod 2,
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(3) (p))? is an infinite-cycle in the Serre spectral sequence for BO—
QtJSO(3)— SU/SO,

(4) py., transgress to [ey,7]*” + (others)®.

Now consider E? = H,SU/SO® H,BO which we write as a coalgebra as
follows:

E*= N[ Py, | k=0mod 29]® Fy[ pk .. | k=0mod 2"]
Q Fyl p2, Prc+1| 2k5£0 mod 2%] @ Fjle,]
with d**'( py . |) =[] as [€,]%, i <2*/2% has been killed earlier. Hence
E®=Fy[ p}.: | k=0mod 2"]
Q Fyl Py, Pak+1 | 2k5£0 mod 2%]® Fle,)/e?” = 0.

Since H,BO and H,SU/SO are both polynomial, there is no extension
problem and

H,Q5ISO(3) = F)[ p}+1 | k=0mod 2%]
@ F)[ Py, Pox+1 | 2k5£0 mod 2] @ Ffe, )/e2” = 0.

as an algebra where k = 8j — 1.

5. “Long” Steenrod operations and spherical homology classes

In this section we record some observations giving some non-trivial ele-
ments in the Hurewicz image for certain spaces. We apply this to the homology
of Q3**S™ and Q5SU(n).

The input is:
(1) a commutative diagram
E X
x l l ¢
B—L - K(G,n)

(2) amap a: X"*'4 — B with fa giving a non-zero map on H,( ;F)),
(3) Bis (k + 1)-connected with n >k + 1,
(4) the fibre of = is F and the fibre of ¢ is Y.

LEMMA 5.1.  IfQX(@) is null-homotopic, then there is a homotopy commu-
tative diagram
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Qk+ightiy 0@, okrip K(G,n—k—1)

T~ | I

QsF QLY
and Q**+X(af), factors through H QtF.

ProoF. Since QF(¢) is null-homotopic, Q&Y splits as QX X
K(G, n — k — 1). The result follows.

We apply Lemma 5.1 by considering the fibration giving the EHP sequence
St — an+l _h’_, m2n+l_
Recall that there is a commutative diagram

RPn—l__, stn

| {
RPn ) Qs+lsn+l

\

Sn Qn+ls2n+l

Next write n = 2°(2k + 1) — 1 for k = 0. Inspecting the cohomology of RP" we
get a homotopy commutative diagram

QS” E

J l

QIS — K(Zy, 2% +2° — 1)

| -

Qriigm+t_L | K(Z,, 2° %k +2° — 1)

where finduces an isomorphism on H"( ; F,). Since Q¢(Sq**")* is trivial on
H¥+2-1-4g(Z, 29k + 2% — 1 — q) for ¢ = 2°, we have proved Theorem 1.8.

COROLLARY 5.2. The mod-2 reduction of the Hurewicz image of the
adjoint for w, in H,_,_(Q3+*S") is non-zero ifn = 2°(2k + 1) — 1,k >0, and
n—1>qz2°
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ExamrLE 5.3. If n =2k, Corollary 5.2 gives that the adjoint of w, has
non-trivial Hurewicz image in H, _,Q"*'S". If n = 4k + 1, then the adjoint of
the Whitehead square has non-trivial image in H, _,Q4+2S". By [H], this is best
possible in case n =45 + 1.

Next consider H*CP" = F[x)/x"*!=0. Write n =2°(2k + 1)— 1 for k =
0. Since SqX@Wx 2k +2'=1 = x2*"%+2°~1 = xn there is a commutative diagram

zCp* SU(n + 1) K(Z,, 2°% 'k + 291 =1)

| -

S2n+1 S2n+l K(Zz, 2n + 1)

Thus if g >24*1 — 1, Q7(Sq**'*) is trivial on
H2-+lk+2¢+‘—1—qK(Zz’ 2a8+1} + 2a+1 —-1- Q).
The following now is a direct consequence of Lemma 5.1.

COROLLARY 5.4. Ifn=2°Q2k +1)—1 and ¢ >2°*'— 1, then the com-

posite
EC-H

Qe+1(9
sn-¢ ET og+igm+1 219 Q4§SU(n)
is non-zero on H, _,.

REMARK. Ifa =0 or 1, this is best possible by the thesis of D. Waggoner
[Wa]. In particular if g = 0 or 1 and g = 2%*' — 1, then the resulting map in
homology is zero. If a =0 or 1 and ¢ >2%*!— 1, the map is non-zero in
homology.

Somewhat more generally, one might consider the fibration

le_lsn , QSn+l Ay R Qsl'n+l
and ask whether the map Q*(h}) is an epimorphism in homology.

LEMMA 5.5. The map Q(hi) induces an epimorphism in homology for
k =2'n -2 ifand only if the map

l-Iz'n--k—IS-I’HJSZ"‘-Fl EIJZ’n—k—lgzk“-z‘swn"’l _'HZ’n—k—l(Q’(;JZ‘-ISn; FZ)
is zero.

Proor. Consider the map of fibrations
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Qk+2s2‘n+l > % . Qk+15'2'n+1

| | [

Ok Jye_ 8" —— Qk+1Sn+1 s Qk+1g2n+1

Notice that Q¥(A), is zero on H,;, _; _, if and only if Q*(h}),,is onto Hy, _,. We
claim that Q(h}), is onto Hy,_, if and only if it is onto all of H,Qt+!§%"+!,

It suffices to show that if Q*(h%),,is onto Hy, _;, then it is onto. Since Q*(h}),,
commutes with Q;, 0 =i = k — 1, it suffices to show that there exist elements
x with Q¥(h$), (x;) = Qi (i i) + others.

By assumption x, exists. We claim that setting x; = Qf (x,) suffices. Consider
the (k —1)-fold homology suspension o*~!':H,Q*X—H, ,_ QX and
o*~'Ql (xo) = [0*~(x,)]*. Thus o*~'Qf(x,) has image (1)*"' in H,,,-+(QS"*")
where is the fundamental class of H,(QS"*"). Since A} ,(i**") = (i)* where i is
the fundamental class of H,,(QS™**!) it follows that

Q (1) o 00) = Qi lizn—i) + A
where g*~!(A) = 0. The lemma follows.

Next, consider A : QS"+! — QS +! and recall that (h}),(i*) = i where 1 is
the fundamental class of H,:,(25*"*"). Observe that if n = 2 and n = 2j, then
S¢/@-VQ:[1] = Q![1]. Hence there is a commutative diagram

Qp+IS" ! — K(Z,,2'n —n — j(2' — 1))
l 1Sql(2‘-l)
Q"'“Sz"'“——» K(Zz, 2 — n)

Notice that Q(Sq/@ V) is trivial in the right-hand fibration and thus we have
proved the following result.

COROLLARY 5.6. The composite
S2'n—n > Qn+lsz'n+l n-(a), 98+1J2’—1Sn
is non-zero in homology if n =0 mod 2.

A similar calculation applies if n =1 mod 2; we omit the details.

As a final example, consider the fibration $2—QS%—QS* giving S*—
QS3(3) - QS°. A direct calculation applied to Q3.5° — Q8.5*— Q4S5(5) gives
the following result.
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THEOREM 5.7. There is an isomorphism of algebras
H, Q483 = N[QIQI1] 2% a + b = 1]@ F[Q{Q2Q504¢x, | b + d > 0]
@ F,[Q¢Q5x,, x? | a + ¢ >0).

PrROOF. By the above QfQ5x, transgresses to (QfQ*[1] #[2~2~%])? + (m)?
where m is in the ideal generated by (QFQ51] #[2~*~)? of degree strictly
less than (Q7Q5[1])%

6. Proof of Theorem 1.5

Let X be a space and assume that there is a map
II: X—+BGL(F,)* (=ImJatp)
where p is an odd prime and ¢ is as given in Section 1.

THEOREM 1.5. Assume that I1 induces a split epimorphism on the p-
primary component of II,,_s(ImJ)=Z/p. Then H (5 X; F,) contains a
primitively generated Hopf algebra which is polynomial on infinitely many
generators ifn = 2.

The proof of Theorem 1.5 depends on the existence of a single primitive
element of infinite height in H (3 X; F,).

ExamrLE 6.1. Give Q) S", the component of the degree 1 maps in Q"S”,
the structure of an H-space by composition of maps. Thus the stabilization
map gives a map

II: Qﬁ)S" —~ImJ
which satisfies the hypotheses of Theorem 1.5 if n = 3.

LEMMA 6.2. LetIl: X —Im J be a map which gives a split epimorphism on
I1,,-5Im J,y= Z/p. Then Il induces a split epimorphism on mod-p homotopy
(but not necessarily integrally even afier localization at p).

ProoF. Consider a:P??~Yp)—X and a:P* Y p)— X with the first
Bockstein of & given by a, and Il represents a generator of I1,, _;(Im J; F)).
Consider the Adams map A : PY+2?~% p)— P¥( p) where N = 3. Consider the
homotopy commutative diagram
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/\

P2 p)

\/

where & generates IT,,_(Q3,S™; F,). ThusI1-a-A*,I1-a, B(I1-&- A *) generate
II,(Im J; F,) where B denotes the first Bockstein in mod-p homotopy. The
lemma follows.

Notice that the natural map IT: Q},S*—Im J induces a split epimorphism
on IT,( ;F,) but is not even onto II,Im J® Z, as the p-torsion in I1,S? is
bounded by p [S].

LeMMA 6.3. Consider QX where X is an H-space. If H (4 X; F,) con-
tains a primitive element of degree non-zero mod-p, of infinite height, and
n =2, then H (Q3X; F,) contains a primitively generated sub-Hopf algebra
which is polynomial on infinitely many generators.

Proor. Let x €H,;(% X; F,) where X is primitive and of infinite height.
Consider

01 (x)=Qsp-2° @y, —ox)

—k—>

which is defined as long as n =2 because QX is a retract of Qf*'XX.
Notice that

Q,(x) =cQ7'Q¥ ™. - .Q7Q'x, ¢ #0,
for s =j + 1. Also P!, Q,,(x) = — (1)1, sp*~(p — 1) — p)Q¥*~'Q,,_(x) and

1 mod pifk =2
Lsp* " (p—-1)—p)= ’
(L™ (P~ 1= p) {l—s mod pifk=1.
Since j5£0 mod p by hypothesis, we have the equation
(*» pepe. .. PLPLO (X)) =d(x?"), d=0.

Let B denote the Hopf algebra which is polynomial on primitive generators
Q,(x) and define a map of Hopf algebras
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0:B—H Q4 X;F,)

by 6(Q;,(x)) = Q,,(x). A basis for the module of primitives in B is given by
(0, (x))? and there is at most one of these in any fixed degree. Since x
has infinite height in H (2§ X; F,), equation () guarantees that 6 is a
monomorphism on the module of primitives. Thus 8 is a monomorphism and
the lemma follows.

ProOF OF THEOREM 1.5. First consider Q"I1: Q¥"X —Q2*ImJ and
notice that the first two non-vanishing mod-p homotopy groups of Q3" Im J
are in dimensions ¢ —2d and ¢ —2d — 1 where ¢ =2p—2,0=d<p -1
and n=d mod(p — 1). Thus we get 1: P?~(p)— Q23X such that Q*"II(1)
generates I1,_,,(Q3" Im J; F,) by Lemma 6.2. But by inspection, the mod-p
Hurewicz map

®: 11, _,(Q" Im J; F,)—~ H,_,,(Q%" Im J; F,)

is an isomorphism. Thus there is a primitive element in H,_,,(Q}"X; F,) of
infinite height by Theorem 1.3. Since 0 =d < p — 1, ¢ — 2d is prime to p and
Lemma 6.3 applies to give the theorem.

Next consider Q***!I1: Q3**'X — Q2**! Im J and assume that n = 1 here.
Then Lemma 6.2 implies that there is a primitive element in
H, ,; Q¥ *'X; F,) of infinite height if ¢ =2d —2>0. Thus Lemma 6.3
applies to give the theorem if ¢ — 2d — 2 > 0. In case ¢ — 2d — 2 = 0, then the
first non-vanishing mod-p homotopy group of Q3"+! Im J is in degree 2p — 2
and Lemmas 6.2 and 6.3 apply to give the theorem.

Finally assume that # = 1. Thus there is a map y : P?~3(p) — Q, X such that
(QIT)y) represents a generator of I1,, _;(Q Im J; F,). Thus there are primitive
elements v, u in degrees 2p — 3 and 2p — 4 such that ¥ and v are mod-p
spherical. Consider the polynomial algebra generated by fQ¥_, (v) and notice
that there is a sequence of Steenrod operations P}, with PLAQ¥_(v) = e(Bv)”,
e # 0. This suffices and the theorem follows.
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